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Solutions to selected problems, chapter 2
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Consider the function g(z), i.e. g(x) = 2*>+1. According to the Newton-Raphson
method:

2 2
T xs+1 e — 1
xj+1:xj_g,( ]})I j— = —— = F(x)
g'(z5) 2 2

where we have thus defined F(z;). If the right side is real, also the left side will
be real. Thus, if we start with a real xy, x; will be real for all j which means
that we will not find any complex roots.

We first try to find out graphically if a two-periodic cycle exists:

Consider the figure to the right. We
start with some arbitrary xy and determine
where the tangent hits y = 0 according to
the Newton-Raphson method. We thus get 154
the value x; and draw the tangent from |
there, which hits y = 0 at x,. For a two-
periodic cycle to exist, o should coincide ]
with x¢ (29 = 29 = 2*). From the figure, it 0
appears that this will be the case if xo and 1

x; are placed symmetrically around the y- 03 1 05 S s
axis (|zo| = |z1])-

[\

NO

Considering the symmetry in the figure, we can also conclude that |zo| < |z*| <
|z1]. The figure is drawn with zo = 0.5 which leads to x; = 0.75. According to
the calculations below, x* = j:l/\/§ ~ (0.577 which is in the expected interval.

In order to find the x-value of the two-periodic cycle analytically, we determine
the second return map:

2 2 2 2

€T g _—
T 2m dzj(22 1)

= F?(xy)

A two-periodic cycle with a fixed point z* is a solution of z* = F®)(z*), i.e.

4 (:c*)2 [(x*)2 _ 1} _ {(x*)z _ 1}2 _ 4(1,*)2

With y = (2*)?, we get a second order equation in y which is straightforward to
solve: y = —1 or y = 1/3. Thus,
¥t =4i or rr=+—
V3
Since we start with a real x(, the possible cycle corresponds to z* = 41/+/3.
This solution is also consistent with the discussion using the figure above.

In the calculations above, it has essentially been sufficient to apply the Newton-
Raphson method to find the solution. Now we are asked to determine the stability
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of the two-periodic cycle and then we must use what we learned towards the end
of chapter 2, namely that the the two-periodic cycle is stable if the absolute of
the derivative of the second return map is smaller than one.

(22 = 1) —42% 22 -1 T

2 — — _
(@) dr(z? — 1) Az x?2 -1

and thus

dF@(z) 822 —4(2’—1) (®-1)-222 1 1 z? +1

dr 1622 (2 -1)2 4 * 42 * (2 —1)2

ie.
dF®(£1/v3) 1
<d /V3) ) + 1 + ‘something positive’ > 1,
x

i.e. the 2-periodic cycle is unstable.

With f(x) = raz(1 — z) we get

fO(2) = f(f(x) = rra(l — 2)(1 = ra(l - x))
z* is a fixed point to f@(z) if 2* = fP(2%), i.e.

r—r*r(1—2)(1—rz(l—2))=0
where we have dropped the ‘*’, referring to the fixed point as z. This equation
has a solution if either X = 0 or
9 3 9 1 1 1

1—r*(1—2)(1—rz(l—2)) =0 <= p(x) = 2° —2x —l—x(l—i—;)—;—l—r—z =0 (1)
where we have introduced the notation p(x) for the 3rd degree polynomial. The
equation p(x) = 0 with p(x) of 3rd order is very difficult (but possible) to solve
in the general case. We will therefore use the property that 'If x is a fixed point
to f(z), it is also a fixed point to f(?)(z). The fixed points to f(x) are

r=0 and z=1-1/r

We have already noticed that x is a fixed point also of f®(z). If v =1 —1/r is
also a fixed point it means that p(z) can be written as

pla) = (2* + oz + B) (z — (1 - 1/r)) (2)

In principal, there should be a constant in front of the 2?-term but because there
is no constant in front of the ? term in p(z), we can immediately conclude that
this constant must be equal to one. The standard method is now to divide p(x)
with  — (1 — 1/r) to find the constants o and 5. We find it easier, however, to
perform the products in eq. 2 and identify the coefficients when comparing with
p(x) in eq. 1. This leads to the equations

a—1+4+1/r=-2
B—a+a/r=1+1)r
11 = B+ )
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where a@ = —(r + 1)/r is obtained from the first equation and 3 = (r + 1) /r?
from the third equation. Furthermore, these values of a and (3 do also satisfy the
second equation.

The two additional fixed points of f(?)(z) are now obtained from

1 1
xZ—T+ x+r+2 =0
r r

with the solutions,

:ELQ:%(rJrl:i: (T+1)(r—3)>

The roots are real if » > 3 (when the fixed point, x = 1 — 1/r becomes unstable).

For r = 3.2: #} = 0.7995, 2 = 0.5130.

The period-doubling occurs when the two fixed points of £ (x) which are not
simultaneously fixed points of f become unstable. According to exercise 2.6, they
are

. 1
Tip = T2 = o <r+1j: (r+1)(r—3)>

They are unstable when |-£(f®)(z1,))| = |D(f® (z1,))| > 1.
With
fA(z) =r? (3: — (r+ 1)2* 4 2ra® — 7’ZC4) :

the derivative becomes:
D(f®(x)) = r* (1= 2(r + Da + 6ra® — 4ra®)

We should find the value of this derivative at z; ». Calculate first:
1
B s ((r 1242+ D+ D —3) + (r + 1)(r — 3)>
1
#o= g (0 + 1020+ DA D0 =3) + 4+ 120 - 3)
4 (r 1)+ ) —3) 420+ 1)(r—3) £ (r+ 1)(r —3) (r+1)(7~—3))
which can be simplified somewhat
1
By = g (0D 30+ D2+ D) —3)
312 =3)+ (r+ 1) =3 + 1) — 3))

Now insert x5 into D(f® (x)):

SD( () = 1-

(r+li— (r+1)(7~—3))

+ 2%(< +1)2 £ 2(r + 1) <r+1)(r—3)+(r+1)(7‘+3>)
L(H P 3+ 1)2/(r+1)(r—3) +

r+

12(r = 3) + (r + 1)(r — 3) (7’+1)(r—3))
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Explicit calculations show that the terms containing the /(r + 1)(r — 3)-factor
cancel.

These terms must cancel because of the t-signs because it is a general property
that D(f®(21)) = D(f® (x2)).

The derivative is now obtained as:

DUPw) = =417+ T4 T4 =)
1 3r 2 _
+ 5(r+1)3—5(r+1) (r=3)=...
= —r?+2r+4

The fixed points x; » are stable if:

r2—2r—4<1 and

ID(fP(@10)| < 1 [r? = 2r — 4| < 1@{ 2o a1

In order to get a better understanding about when these inequalities are fulfilled,
it is adviceable to draw the function r?> — 2r — 4. Such a graph should also be
helpful to understand the analytical calculations below.

The first equation is fulfilled 4f:

r—1<+v6 and o r<14++6 and
T—1>—\/6 r>1—\/6

The second equation is fulfilled if:

(r—1)2—6<0<:>{

(T_1)2_4>0<:>{T—1<—2 and {T<—1 and

r—1>2 r>3J3

Since r > 0, the condition for stability of 7, is

3<7“<1+\/6

Thus, the fixed points z7, become unstable at r = 1 + V6 =~ 3.4495, i.e. the
bifurcation from 2- to 4-periodicity takes place at this r-value.

The Lyapunov exponent for an iteration x;1 = f(z;) is defined as
A dim | L5 I f
= Jim, | S 1)

A is thus the mean value of f” at the points z; passed by the iteration (in the
limit j — oo). Thus, if the iteration converges to a fixed point z*, z; will in
practice become equal to x* for all j’s which are ‘large enough’. Consequently,
for large enough N, the average will be completely dominated by In | f/(x*) | and
A=1In| f/(2*) |- As the fixed point is stable, | f'(z*) |< 1, i.e. A <O0.

If {«f, 2%, ... 2%} is an n-periodic attractor, an iteration will pass through these
points and come back to the initial value after n steps. Consequently, the Lya-
punov exponent will result from the average of these values, i.e.

1 - / *
A= I )
k=1
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This expression can be rewritten using the derivative of ). Thus, the property,
In(ab) = In(a) + In(b), is first applied:

n n

1 1
Lo S = w1

k=1

We can now use Eq. (2.15) which takes the form (7 is one value on the n-periodic
cycle):

11 £

k=1

D™ (x7)

and thus ]
A= | DY) |
n

Because 7} is a stable fixed point to f™, | Df™(x¥) |< 1, and thus A < 0 also
in this case. Note also that the equations above show that f(™ has the same
derivative at all its fixed points which are part of the cycle.

From the figures below, it is evident that the tangent bifurcation occurs when
the two solutions of the equation f(z) =z (f(x) = 2 + ¢) become equal

|
1.5+ — 1.5+ 2 —
y=X +¢
1 - 1 -
> y=x >
0.5 — 0.5+ —
_ 2
y=Xx y=x
0 0
05— 05—t
1 0.5 0 0.5 1 1 0.5 0 0.5 1
X X
Let us first ignore the mod-operation:
o L,
Xz C=X = r = < — —C
2 4

where the two solutions become equal for ¢ = 1/4. With the mod-operation, the
general solution is thus ¢ = 1/4 + m, where m is an integer.



