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4. The fixed points x∗ are determined from x∗ = f(x∗). It is then evident that x∗ = 0 is a
fixed point for all a. From the figure of f(x), you conclude that there is another fixed
point for 1 ≤ a ≤ 2 which is determined from

x∗ = a(1− x∗) ⇒ x∗ =
a

1 + a

The Lyapunov exponent is determined from mean value of ln |f ′(x(j))| for an iteration

λ =
1

N

N−1
∑

j=0

ln |f ′(x(j))|

in the limit when N → ∞. In the present case, |f ′(x)| = a for all x (except x = 1/2)
which leads to λ = ln(a).
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f(x) and f (2)(x) for a = 2 are shown above. If one notes that also f (2)(x) must be built
from straight lines, it is easy to find f (2)(x) if one calculates it for a few x-values.

If you want to derive f (2)(x) more formally, you have to divide the interval into four
parts:

* 0 ≤ x ≤ 1/4: In this interval, f(x) = 2x will fall in the interval [0, 0.5] so you
should apply f(x) = 2x once more, f (2)(x) = 2(2x) = 4x.

* 1/4 ≤ x ≤ 1/2: f(x) = 2x will fall in the interval [0.5, 1.0] so you must apply
f(x) = 2(1− x) in the second step, f (2)(x) = 2(1− (2x)) = 2(1− 2x).

* 1/2 ≤ x ≤ 3/4: In this interval, f(x) = 2(1− x) and the result fall in the interval
[0.5, 1.0] so you must apply f(x) = 2(1−x) once more, f (2)(x) = 2(1−(2(1−x))) =
2(2x− 1).

* 3/4 ≤ x ≤ 1: f(x) = 2(1 − x) falls in the interval [0, 0.5] so you must apply
f(x) = 2x in the second step, f (2)(x) = 2 ∗ (2(1− x)) = 4(1− x).

5. We use the formula
n
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The first fractal is formed from one map with the length scale 1/4 and another map
with the length scale 1/2. Thus
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With x =
(
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)D
, you get the equation x2 + x− 1 = 0 which has the solutions
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where we have chosen the positive solution because
(

1
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)D
is positive. Thus D =

− ln (
√
1.25− 0.5)/ ln 2 ≈ 0.694.

The second fractal is formed from three maps with the length scale 1/4. Thus
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=

ln 3

ln 4
≈ 0.792

c) If the first fractal is iterated 3 steps, it can be covered by 8 lines of length L/16
as shown by thick lines below. Note that you would have needed 9 lines if you have
iterated only 2 steps. Furthermore, because one line is longer than the measuring unit
after three iterations (L/8 compared with L/16), you must convince yourself that you
will not need fewer than 8 lines to cover the fractal after a fourth iteration.

For the second fractal, you would only need to iterate two steps but three iterations are
illustrated below. You need 9 lines to cover the fractal.

The fact that you need more lines to cover the second fractal is consistent with the fact
that it has a larger dimension than the first fractal.

6. The two equations can be written, ẋ = f1(x, y), ẏ = f2(x, y). A fixed point corresponds
to ẋ = ẏ = 0. It is then trivial to insert (x, y) =

(

c
d
, a
b

)

and show that f1(c/d, a/b) = 0
and f2(c/d, a/b) = 0.

The stability is determined from the eigenvalues of the Jacobian, which are calculated
from the Jacobian:
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With f1 and f2 as given in the text:
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and thus
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The eigenvalues h1,2 are now determined from the equation
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This equation has the solution:
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With higher orders of r neglected:
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In this limit, the eigenvalues are complex and the stability is determined from Re(h1,2).
Because b2c − ad2 > 0, Re(h1,2) < 0 for r < 0 which means that the equilibrium is
stable while r > 0 leads to Re(h1,2) > 0 corresponding to an unstable equilibrium.

7. When writing the map in standard form, you just put in x(j + 1) according to the first
equation into the second equation. Thus

{

x(j + 1) = 2x(j) + y(j)α = f1(x(j), y(j))
y(j + 1) = 2x(j) + y(j)α + b (x (j) + y (j)) = f2(x(j), y(j))

where the second equation can be rewritten as

y(j + 1) = (2 + b)x(j) + y(j)α + by (j)

The map is area-conserving if the determinant of the Jacobian is equal to 1, i.e.
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This equation leads to 2b − bαyα−1 = 1 which can be fulfilled for all values of y either
if α = 1, leading to the equation 2b − b = 1 and thus b = 1, or for α = 0 leading to
2b = 1 and thus b = 1/2. Note also that the general requirement for area conservation
is rather |det(f(x, y))| = 1 and with det(f(x, y)) negative instead, you get a sign change
for b.
c) We will consider the (non-trivial) values α = 1 and b = 1:

{

x(j + 1) = 2x(j) + y(j)
y(j + 1) = 3x(j) + 2y(j)

The eigenvalues are obtained from the equation
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which leads to h̃1,2 = 2 ±
√
3. The eigenvalues are thus independent of x and y which

means that the Lyapunov exponents must be the same for all iterations. They are
obtained as

λ1 = ln (2 +
√
3) ≈ 1.317

λ2 = ln (2−
√
3) ≈ −1.317

With α = 0 and b = 1/2, h̃1 = 2 and h̃2 = 1/2 and thus

λ1 = ln 2 ≈ 0.693

λ2 = ln (1/2) ≈ −0.693

Also for these values of α and b, the eigenvalues are independent of x and y so the
Lyapunov exponents are the same for all iterations also in this case.

Alternatively, from the fact that the functions are linear for both values of b and α, you
can conclude that the Lyapunov exponents must be independent of the initial values
but you are still asked to calculate their values.


