Wobbling excitations and tilted rotation in 163Lu

Daniel Almehed
University of Surrey, Guildford, UK

International Conference on Finite Fermionic System
Nilsson Model 50 Years
Lund, 17th of June 2005

In collaboration with:
F. Dönau (FZ Rossendorf) and
R. Nazmitdinov (Dubna and Universitat de les Illes Balears)
Wobbling motion:

- Orientation fluctuations of the angular momentum vector.
- Should appear in triaxial nuclei on top of rotational bands. $\Delta I = 1$
- Identified in TSD band in 163Lu.

We use:

- Self-consistent cranked HFB
- Pairing+QQ Hamiltonian
- RPA

Results:

- Right energy of the lowest solution.
- Pairing influence phonon energy.
- Transition to a tilted solution.
- Our *wobbling* solution is of isovector type. (High spin scissors mode)

Cranking Hamiltonian

Quadrupole+pairing Hamiltonian:

\[
\hat{H} = \hat{h}_{\text{Nilsson}} - \frac{\kappa}{2} \vec{Q} \cdot \vec{Q} - \sum\limits_{\tau} \hat{P}_\tau^{\dagger} \hat{P}_\tau
\]

Mean field Hamiltonian in the rotating frame:

\[
\hat{h}'(\omega, \epsilon_2, \gamma, \theta) = \hat{h}_0 - \frac{2}{3} h\bar{\omega}_0 \epsilon_2 \left\{ \hat{Q}_0 \cos \theta - \left(\hat{Q}_2 + \hat{Q}_{-2} \right) \sin \theta \right\} - \vec{\omega} \cdot \vec{J} - \sum\limits_{\tau} \Delta_{\tau} \left(\hat{P}_\tau^{\dagger} + \hat{P}_\tau \right) - \lambda_{\tau} \hat{N}_\tau
\]

Self-consistency conditions (energy minimum):

\[
\kappa \langle \hat{Q}_0 \rangle = \frac{2}{3} \epsilon \cos \gamma \quad \kappa \langle \hat{Q}_2 + \hat{Q}_{-2} \rangle = \frac{2}{3} \epsilon \sin \gamma \quad \vec{\omega} \parallel \vec{J} \quad \Delta_{\tau} = G_{\tau} \langle \hat{P}_\tau \rangle
\]
Deformation in 163Lu

![Graph showing deformation in 163Lu with and without pairing. The graph plots ε_2 and γ against $\hbar\omega$ (in MeV). The graph includes two curves: one for 'Without pairing' and another for 'With pairing'.]
RPA energy in 163Lu

$$[\hat{H}_{\text{RPA}}, \hat{O}_\lambda] = \Omega_\lambda \hat{O}_\lambda$$

![Graph showing RPA energy comparison between experiment and RPA wobbling.](image)

Legend:
- RPA Wobbling $\Delta=0$
- Experiment
- RPA Wobbling
Wobbling angle in 163Lu

$$\Delta J_i^2 = \langle \lambda | \hat{J}_i^2 | \lambda \rangle - \langle 0 | \hat{J}_i^2 | 0 \rangle = 2 \left[\hat{J}_i, \hat{W} \dagger \right] \left[\hat{W}, \hat{J}_i \right] = 2 \left[\hat{W}, \hat{J}_i \right]^2$$

Diagram showing the wobbling angle with Neutron, Proton, i13/2 proton, and Total contributions.
Isovector wobbling angle in 163Lu

$$\Delta J_i^2 = 2 \left\{ \left| [\hat{J}_i, \hat{W}^\dagger]_{\text{proton}} \right| + \left| [\hat{J}_i, \hat{W}^\dagger]_{\text{neutron}} \right| \right\}^2$$

$$\theta_{RPA} = 90 - \arctan \left(\frac{\sqrt{\Delta J_y^2 + \Delta J_z^2}}{J_x} \right)$$

$$\phi_{RPA} = \arctan \left(\sqrt{\frac{\Delta J_y^2}{\Delta J_z^2}} \right)$$
Transition probabilities in 163Lu

<table>
<thead>
<tr>
<th>$\hbar\omega$ [MeV]</th>
<th>B(E2) out/B(E2) in</th>
<th>B(M1) out/B(E2) in</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>0.25</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>0.35</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Experiment
With pairing
Without pairing
Summary

- Low lying vibrations on top of TSD-bans in 163Lu.
- Transition to tilted solution at high spin.
- Pairing influence phonon energy indirectly by reducing the γ-deformation.
- Our *wobbling* solution is isovector type (high spin scissors mode.)
- Experimental B(E2) well described but B(M1) to large

Outlook...

- Other nuclei? (even-even)
- Spin-spin force, isovector force, ...
Pairfield in 163Lu

D. Almehed
Moment of inertia in 163Lu

$J_{\text{Inglis-Belayev}} \left[\frac{(h/2\pi)^2}{\text{MeV}} \right]$
Wobbling angle in 163Lu

![Graph showing wobbling angle in 163Lu](image)

- Neutron
- Proton
- i13/2 proton
- Total

D. Almehed