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1 Orbital angular momentum in real space

A rotation D transforms an arbitrary function f(r) (such as a potential or a wave function)
into a new function f(r). In order to construct f(r), we consider the rotation of space, where
D(r) =t can be described by an orthogonal matrix. Now f(T) = f(r) holds, which implies

In particular we consider an infinitesimal rotation with angle d¢, where the vector denotes the
direction of the axis of rotation (right-hand rule). We find D(r) =r + d¢ x r and

U(r) =U(r — ¢ x 1) =~ U(r) — (0¢ x r) - VI(r)
—U(r) - %5¢- (r X Thv) U(r) = (1 - %5¢ : 1:) U(r)

~

The operator of the orbital angular momentum L = r X p generates infinitesimal rotations in
the three-dimensional space.

Defining L? = L2 + L2 + L? we find the commutator relations

[f12, [A/j] =0 und Lj, Lk lhz Ejk‘lLl 5

which have the following interpretation: Consider a sequence of two infinitesimal rotations
around the z and y axis:

P P
D,D, = (1 - ﬁa@Lx) (1 - ﬁa%Ly)
SO S| .
1= 206, L, = £06,L, — 06,06, L. L,
1 S i .
=D, D, = 506,06, (LoLy = LyLs) = DD, - =00,00, L.

~D,D, (1 _ 7—25@5@@)

The fact that the commutator between L, and f}y is finite, relates to the geometrical obser-
vation, that rotations around the x and y axis do not commute.
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2 Generalized angular momentum

The commutation relations of the angle momentum have their origin in the transformation of
objects under rotations. This suggests

We define general self-adjoint operators I, jy, J, for angular momentum via the relations

[J2,J]=0 and [J;, Jy] = meJZ (1)

where J% = J2 + J; J2 + J2. Furthermore we define the shift operators

~

o A N A N\T
Ji=J,+1J, with (Ji) = Jo

Then there exists a basis of the Hilbert space consisting of common eigenstates of the operators
J? and J.. Let |¥) be such a normalized state. In the following we will determine the properties
of the corresponding eigenvalues.

1. The eigenvalues of J2 are not negative.
Proof: Let J2|¥) = a|¥). Then

@ = (WIP0) = (W, [0,) + (U, W) + (V.[¥.) >0

where |¥;) := J;|¥) and thus (;| = (U|J;, as J; is self-adjoint. [J

Therefore we can write the eigenvalues as
J2|W) = j(j + DR3®) and J.|T) = mh|D)

where we temporarily allow j € RT and m € R (they will turn out to be half-integer
numbers later).

2. Consider |U,) = J,|¥). We find
(W W) = (U|J_JL W) = (U|J2 + J2 +i[J,, J,)|¥) = (P|J* — JZ — hJ.|T)
=[G+ 1) —m? = m]h’
Thus

(a) V) =0&m=j5 or m=—j—1

(b) For m > j orm < —j — 1 we would find (U, |[¥,) < 0. Thus —j —1 <m < jis
required.

(c) |W.) is also eigenstate of J2 and J, with the eigenvalues j(j + 1)A2 and (m + 1)A.
Proof:

PUy) = PJL0) = L I%0) = Joj( + DRYY) = j(j + ATy
L0L) = T+ 1) 9) = (o + 1) 109) + (L, J] + L, J,)]) [9)
= (o +id)mhl®) + b (i, + 1) ¥) = (m+ Dhw,) O
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Now we write |U) = |a, j, m), where a denotes further quantum numbers, as there can be
several states with equal j and m. Using (a) and (c) we define for m # j

1
h/j(G+1) —m(m +1)

|a'>j>m+]'> = j+|aajam> (2)

The repeated operation of j+ provides a sequence of states |a, 7, m), |a, j,m+1), |a, 7, m+
2),.... This sequence stops if m + i, = j, as in this case j+\a,j,m +iy) = 0. If the
sequence does not terminate one reaches states contradicting (b) for ¢ > j — m. The
necessity to stop provides us with the condition that m = j — ¢, with i, € Ny holds.

3. Consider |U_) = J_|¥). Now we find (U_|U_) = h2[j(j + 1) — m2 + m] implying

(a) [W_)=0&m=—j or m=j+1
(b) For m < —j or m > j+ 1 we would find (¥_|¥_) < 0. Thus —j < m < j+ 1 holds.
(c) |W_) is also eigenstate of J2 and J, with eigenvalues j(j + 1)A2 and (m — 1)h.

For m # —j we define

J-la, j,m) (3)

la,j,m —1) =

h/(G+1) —m(m —1)

Now the repeated operation of J_ provides a sequence of states la, j,m), |a,j,m — 1),
la, j,m —2),.... This sequence stops if m —i_ = —j holds, as j_\a,j,m —i_) =0 in this
case. Otherwise the state |a, j, m — 7) contradicts (b) for ¢ > —j+m. Thus m = —j +i_
holds with i_ € Ng.

Summary of 2 and 3:

For each common eigenstate |¥) of J2 and .J, with eigenvalues j(j + 1)A2 and mh holds:

e There are 1,1 e Nywithm+i, =jandm—i_=—j. = 2j=i, +i_ €Ny

e Repeated operation of j+ and J_ creates a sequence of states la, j,m') withm/ = —j, —j+
1,...7, which are all common eigenstates of J? and J,.

The results of 1,2,3 can be summarized:

The operator J2 have the eigenvalues j(j+ 1)k with j = 0, $,1,2,2,2 . The corresponding
eigenstates form multiplets of 2j + 1 states |a,j,m) with m = —j,—j + 1,...7, which are

eigenstates of J, with the respective eigenvalue mh sind. Le.,

J?a,j,m) = j(j + 1)k*|a, j,m) und J.|a,j,m) = mhla, j,m) (4)

The Hamilton-operator H has rotational | symmetry if it commutes with the operators j for the
general angular momentum. Thus [H,.J;] = 0 for all i = z,y, z and we also find [H,J I =0.
Therefore there exists a system of common eigenstates for the operators H,J? and J, with
respective eigenvalues E, j(j + 1)h* and mh. For such an eigenstate |¥), we can construct
W) = Jo|¥) and find H|V.) = HJ.|U) = JLH|V) = J,E|¥) = E|W.). Thus |¥.) are
eigenstates of H with the same energy. Repeating this procedure we find:

In systems with rotational symmetry all states of a multiplet |a, j, m) withm = —j, —j+1,...j
have the same energy. This provides a (25 + 1)-fold degeneracy.
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3 Spin of the electrons

Experimentally one observes a double degeneracy of the electron states. This degeneracy is
lifted by a magnetic field as characteristic for angular momentum associated with a magnetic
moment « J. Such a doublet can be described by an internal angular momentum of the
electron with j = 0.5, which is called spin, as postulated by Goudsmith and Uhlenbeck (1925).
We denote the corresponding states with m; = £1/2 by |+) and |—). In this basis a general
state can be written as a column (Spinor):

a_

0 =aul) +al-h— (&) 5)

Let 5}, Sy, S, be the angular momentum operators in spin space. From the general properties
(2,3,4) we find

R 1 . 1
S:|+) —§ﬁ\+> Si=) =~— §h|—>
So|+) =0 Sil|=) =hl+)
S_|+) =h|-) S_|-) =0

In the basis |[+) and |—), the spin operators are therefore represented by the following matrices

. R/ 1 0 . 0 1 . 0 0
SZHE(O —1) S+Hh<o 0) S—Hh(l 0)

As S, = (S; +5_)/2 and S, = (S, — S_)/2i we obtain the representation

A A A A h with the 01 0 — 1 0
S = Sze: + 5y + 5re: — 50 Pauli matrices % <1 0) Ty = (z 0 ) Tz = <0 —1)

Note that S and ¢ are vectors in the conventional three-dimensional real space, with a direction
pointing along the axis of rotation they generate. In contrast the columns in Eq. (5) and the
Pauli matrices are elements of the two-dimensional complex spin space.




