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1 Orbital angular momentum in real space

A rotation D transforms an arbitrary function f(r) (such as a potential or a wave function)
into a new function f̃(r). In order to construct f̃(r), we consider the rotation of space, where
D(r) = r̃ can be described by an orthogonal matrix. Now f̃(r̃) = f(r) holds, which implies

f̃(r) = f(D−1(r))

In particular we consider an infinitesimal rotation with angle δφφφ, where the vector denotes the
direction of the axis of rotation (right-hand rule). We find D(r) = r + δφφφ × r and

Ψ̃(r) =Ψ(r − δφφφ × r) ≈ Ψ(r) − (δφφφ × r) · ∇Ψ(r)

=Ψ(r) −
i

~
δφφφ ·

(

r ×
~

i
∇

)

Ψ(r) =

(

1 −
i

~
δφφφ · L̂

)

Ψ(r)

The operator of the orbital angular momentum L̂ = r̂× p̂ generates infinitesimal rotations in
the three-dimensional space.

Defining L̂2 = L̂2
x + L̂2

y + L̂2
z we find the commutator relations

[L̂2, L̂j] = 0 und [L̂j , L̂k] = i~
∑

l

ǫjklL̂l ,

which have the following interpretation: Consider a sequence of two infinitesimal rotations
around the x and y axis:

DxDy =

(

1 −
i

~
δφxL̂x

) (

1 −
i

~
δφyL̂y

)

=1 −
i

~
δφxL̂x −

i

~
δφyL̂y −

1

~2
δφxδφyL̂xL̂y

=DyDx −
1

~2
δφxδφy

(

L̂xL̂y − L̂yL̂x

)

= DyDx −
i

~
δφxδφyL̂z

≈DyDx

(

1 −
i

~
δφxδφyL̂z

)

The fact that the commutator between L̂x and L̂y is finite, relates to the geometrical obser-
vation, that rotations around the x and y axis do not commute.
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2 Generalized angular momentum

The commutation relations of the angle momentum have their origin in the transformation of
objects under rotations. This suggests

We define general self-adjoint operators Ĵx, Ĵy, Ĵz for angular momentum via the relations

[Ĵ2, Ĵj] = 0 and [Ĵj, Ĵk] = i~
∑

l

ǫjklĴl (1)

where J2 = Ĵ2
x + Ĵ2

y + Ĵ2
z . Furthermore we define the shift operators

Ĵ± = Ĵx ± iĴy with
(

Ĵ±

)†

= Ĵ∓

Then there exists a basis of the Hilbert space consisting of common eigenstates of the operators
Ĵ2 and Ĵz. Let |Ψ〉 be such a normalized state. In the following we will determine the properties
of the corresponding eigenvalues.

1. The eigenvalues of Ĵ2 are not negative.

Proof: Let Ĵ2|Ψ〉 = α|Ψ〉. Then

α = 〈Ψ|Ĵ2|Ψ〉 = 〈Ψx|Ψx〉 + 〈Ψy|Ψy〉 + 〈Ψz|Ψz〉 ≥ 0

where |Ψi〉 := Ĵi|Ψ〉 and thus 〈Ψi| = 〈Ψ|Ĵi, as Ĵi is self-adjoint. �

Therefore we can write the eigenvalues as

Ĵ2|Ψ〉 = j(j + 1)~2|Ψ〉 and Ĵz|Ψ〉 = m~|Ψ〉

where we temporarily allow j ∈ R
+ and m ∈ R (they will turn out to be half-integer

numbers later).

2. Consider |Ψ+〉 = Ĵ+|Ψ〉. We find

〈Ψ+|Ψ+〉 = 〈Ψ|Ĵ−Ĵ+|Ψ〉 = 〈Ψ|Ĵ2

x + Ĵ2

y + i[Ĵx, Ĵy]|Ψ〉 = 〈Ψ|Ĵ2 − Ĵ2

z − ~Ĵz|Ψ〉

= [j(j + 1) − m2 − m]~2

Thus

(a) |Ψ+〉 = 0 ⇔ m = j or m = −j − 1

(b) For m > j or m < −j − 1 we would find 〈Ψ+|Ψ+〉 < 0. Thus −j − 1 ≤ m ≤ j is
required.

(c) |Ψ+〉 is also eigenstate of Ĵ2 and Ĵz with the eigenvalues j(j + 1)~2 and (m + 1)~.
Proof:

Ĵ2|Ψ+〉 = Ĵ2Ĵ+|Ψ〉 = Ĵ+Ĵ2|Ψ〉 = Ĵ+j(j + 1)~2|Ψ〉 = j(j + 1)~2|Ψ+〉

Ĵz|Ψ+〉 = Ĵz(Ĵx + iĴy)|Ψ〉 = (Ĵx + iĴy)Ĵz|Ψ〉 +
(

[Ĵz, Ĵx] + i[Ĵz, Ĵy)]
)

|Ψ〉

= (Ĵx + iĴy)m~|Ψ〉 + ~

(

iĴy + Ĵx

)

Ψ〉 = (m + 1)~|Ψ+〉 �
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Now we write |Ψ〉 = |a, j, m〉, where a denotes further quantum numbers, as there can be
several states with equal j and m. Using (a) and (c) we define for m 6= j

|a, j, m + 1〉 =
1

~
√

j(j + 1) − m(m + 1)
Ĵ+|a, j, m〉 (2)

The repeated operation of Ĵ+ provides a sequence of states |a, j, m〉, |a, j, m+1〉, |a, j, m+
2〉, . . .. This sequence stops if m + i+ = j, as in this case Ĵ+|a, j, m + i+〉 = 0. If the
sequence does not terminate one reaches states contradicting (b) for i > j − m. The
necessity to stop provides us with the condition that m = j − i+ with i+ ∈ N0 holds.

3. Consider |Ψ−〉 = Ĵ−|Ψ〉. Now we find 〈Ψ−|Ψ−〉 = ~
2[j(j + 1) − m2 + m] implying

(a) |Ψ−〉 = 0 ⇔ m = −j or m = j + 1

(b) For m < −j or m > j + 1 we would find 〈Ψ−|Ψ−〉 < 0. Thus −j ≤ m ≤ j + 1 holds.

(c) |Ψ−〉 is also eigenstate of Ĵ2 and Ĵz with eigenvalues j(j + 1)~2 and (m − 1)~.

For m 6= −j we define

|a, j, m − 1〉 =
1

~
√

j(j + 1) − m(m − 1)
Ĵ−|a, j, m〉 (3)

Now the repeated operation of Ĵ− provides a sequence of states |a, j, m〉, |a, j, m − 1〉,
|a, j, m− 2〉, . . .. This sequence stops if m− i− = −j holds, as Ĵ−|a, j, m− i−〉 = 0 in this
case. Otherwise the state |a, j, m− i〉 contradicts (b) for i > −j + m. Thus m = −j + i−
holds with i− ∈ N0.

Summary of 2 and 3:

For each common eigenstate |Ψ〉 of Ĵ2 and Ĵz with eigenvalues j(j + 1)~2 and m~ holds:

• There are i+, i− ∈ N0 with m + i+ = j and m − i− = −j. ⇒ 2j = i+ + i− ∈ N0

• Repeated operation of Ĵ+ and Ĵ− creates a sequence of states |a, j, m′〉 with m′ = −j,−j+
1, . . . j, which are all common eigenstates of Ĵ2 and Ĵz.

The results of 1,2,3 can be summarized:

The operator Ĵ2 have the eigenvalues j(j+1)~2 with j = 0, 1

2
, 1, 3

2
, 2, 5

2
, . . .. The corresponding

eigenstates form multiplets of 2j + 1 states |a, j, m〉 with m = −j,−j + 1, . . . j, which are
eigenstates of Ĵz with the respective eigenvalue m~ sind. I.e.,

Ĵ2|a, j, m〉 = j(j + 1)~2|a, j, m〉 und Ĵz|a, j, m〉 = m~|a, j, m〉 (4)

The Hamilton-operator Ĥ has rotational symmetry if it commutes with the operators Ĵi for the
general angular momentum. Thus [Ĥ, Ĵi] = 0 for all i = x, y, z and we also find [Ĥ, Ĵ2] = 0.
Therefore there exists a system of common eigenstates for the operators Ĥ, Ĵ2 and Ĵz with
respective eigenvalues E, j(j + 1)~2 and m~. For such an eigenstate |Ψ〉, we can construct
|Ψ±〉 = Ĵ±|Ψ〉 and find Ĥ|Ψ±〉 = ĤĴ±|Ψ〉 = Ĵ±Ĥ|Ψ〉 = Ĵ±E|Ψ〉 = E|Ψ±〉. Thus |Ψ±〉 are
eigenstates of Ĥ with the same energy. Repeating this procedure we find:

In systems with rotational symmetry all states of a multiplet |a, j, m〉 with m = −j,−j+1, . . . j
have the same energy. This provides a (2j + 1)-fold degeneracy.
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3 Spin of the electrons

Experimentally one observes a double degeneracy of the electron states. This degeneracy is
lifted by a magnetic field as characteristic for angular momentum associated with a magnetic
moment ∝ J. Such a doublet can be described by an internal angular momentum of the
electron with j = 0.5, which is called spin, as postulated by Goudsmith and Uhlenbeck (1925).
We denote the corresponding states with mj = ±1/2 by |+〉 and |−〉. In this basis a general
state can be written as a column (Spinor):

|a〉 = a+|+〉 + a−|−〉 →

(

a+

a−

)

(5)

Let Ŝx, Ŝy, Ŝz be the angular momentum operators in spin space. From the general properties
(2,3,4) we find

Ŝz|+〉 =
1

2
~|+〉 Ŝz|−〉 = −

1

2
~|−〉

Ŝ+|+〉 =0 Ŝ+|−〉 =~|+〉

Ŝ−|+〉 =~|−〉 Ŝ−|−〉 =0

In the basis |+〉 and |−〉, the spin operators are therefore represented by the following matrices

Ŝz →
~

2

(

1 0
0 −1

)

Ŝ+ → ~

(

0 1
0 0

)

Ŝ− → ~

(

0 0
1 0

)

As Ŝx = (Ŝ+ + Ŝ−)/2 and Ŝy = (Ŝ+ − Ŝ−)/2i we obtain the representation

Ŝ = Ŝxex + Ŝyey + Ŝzez →
~

2
σσσ

with the
Pauli matrices

σx =

(

0 1
1 0

)

σy =

(

0 −i
i 0

)

σz =

(

1 0
0 −1

)

Note that Ŝ and σσσ are vectors in the conventional three-dimensional real space, with a direction
pointing along the axis of rotation they generate. In contrast the columns in Eq. (5) and the
Pauli matrices are elements of the two-dimensional complex spin space.


