A Brief Overview on Complex Functions

Andreas Wacker ${ }^{11}$

UNIVERSITY
March 3, 2015

1 Complex functions

Complex numbers z can be viewed as the composition of two real numbers (x, y), called the real part $x=\operatorname{Re}\{z\}$ and the imaginary part $y=\operatorname{Im}\{z\}$, with two operations mapping arbitrary complex numbers z_{1}, z_{2} to a result z^{\prime}.

$$
\begin{array}{r}
\text { Addition } z^{\prime}=z_{1}+z_{2} \text { where } x^{\prime}=x_{1}+x_{2} \text { and } y^{\prime}=y_{1}+y_{2} \\
\text { Multiplication } z^{\prime}=z_{1} z_{2} \text { where } x^{\prime}=x_{1} x_{2}-y_{1} y_{2} \text { and } y^{\prime}=x_{1} y_{2}+y_{1} x_{2} \tag{2}
\end{array}
$$

In practice one writes $z=x+\mathrm{i} y$ and applies the common rules for addition and multiplication together with $\mathrm{i}^{2}=-1$. We define the

$$
\begin{aligned}
\text { conjugation } z^{*} & =\operatorname{Re}\{z\}-\operatorname{iIm}\{z\} \\
\text { absolute value }|z| & =\sqrt{\operatorname{Re}\{z\}^{2}+\operatorname{Im}\{z\}^{2}}=\sqrt{z z^{*}}
\end{aligned}
$$

Figure 1: Plane of complex numbers

For illustrative purpose, complex numbers z are displayed in a plane spanned by the real and imaginary axis, see Fig. 1. They can be parameterized by $|z|$, which marks the distance from the origin, and the angle $\varphi \in \mathbb{R}$ with the real axis:

$$
z=|z|(\cos \varphi+\mathrm{i} \sin \varphi)=|z| \mathrm{e}^{\mathrm{i} \varphi}
$$

The latter relation applies Euler's formula, which will be proven in Eq. (6).
A complex function $z^{\prime}=f(z)$ has the complex numbers both as arguments z and as function values z^{\prime}. For arbitrary complex numbers $\alpha=|\alpha| \mathrm{e}^{\mathrm{i} \phi}$, we identify elementary examples for complex functions $z^{\prime}=f(z)$ as mappings in the complex plane which are defined on the basis of addition and multiplication of complex numbers:

$$
\begin{align*}
& f(z)=z+\alpha \text { (a translation in the plane) } \tag{3}\\
& f(z)=\alpha z \text { (rotation by } \phi \text { and stretching by }|\alpha|) \tag{4}\\
& f(z)=z^{n} \text { (n-fold angle and expansion to }\left|z^{\prime}\right|=|z|^{n} \text {) } \tag{5}
\end{align*}
$$

Combining these functions, we obtain power series $f(z)=\sum_{n} a_{n} z^{n}$ with arbitrary complex coefficients a_{n}. Thus, for any real function, which is described by a Taylor series, we can define

[^0]a more general complex function via the corresponding power series. E.g., we have the complex exponential function
$$
\mathrm{e}^{z}=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} .
$$

For the argument $z=\mathrm{i} \varphi$, where $\varphi \in \mathbb{R}$, we thus find

$$
\begin{equation*}
\text { Euler's formula: } \quad \mathrm{e}^{\mathrm{i} \varphi}=\sum_{j=0}^{\infty}(-1)^{j} \frac{\varphi^{2 j}}{(2 j)!}+\mathrm{i} \sum_{j}(-1)^{j} \frac{\varphi^{2 j+1}}{(2 j+1)!}=\cos (\varphi)+\mathrm{i} \sin (\varphi) \tag{6}
\end{equation*}
$$

where we used the Taylor expansions of the trigonometric functions. Now it can be shown (see any textbook on complex functions), that

For any power series $\sum_{n} a_{n} z^{n}$ there is a specific convergence radius R, so that the power series converges for all $|z|<R$ and diverges for $|z|>R$.
In particular, the convergence radius is infinite for the Taylor series of $\mathrm{e}^{z}, \sin (z)$, and $\cos (z)$.

Figure 2: Convergence radius for the Taylor series $S_{z_{0}}$ of the function $\frac{1}{z-1}$ for different z_{0}

In contrast the series

$$
S_{0}=-\sum_{n=0}^{\infty} z^{n}
$$

has the convergence radius $R=1$. This is related to the fact, that it is the Taylor expansion around $z_{0}=0$ of the function $f(z)=\frac{1}{z-1}$, which has a pole at $z=1$. However, one may do a Taylor expansion of $f(z)$ around any other point $z_{0} \neq 1$ as well, resulting in

$$
f(z)=S_{z_{0}}=-\sum_{n=0}^{\infty} \frac{1}{\left(1-z_{0}\right)^{n}}\left(z-z_{0}\right)^{n}
$$

This power series has a convergence radius $R=\left|1-z_{0}\right|$ around z_{0}. Again, this is just the distance to the pole at $z=1$. We conclude, that for each point $z \neq 1$, we may choose an appropriate value z_{0} so that the Taylor expansion $S_{z_{0}}$ for $f(z)=\frac{1}{z-1}$ converges in a finite range around z.

2 Complex derivative

Taking the derivative of a complex function is far more intricate than one would think. Its definition is, analogously to the common real functions:

$$
f^{\prime}(z)=\lim _{\delta z \rightarrow 0} \frac{f(z+\delta z)-f(z)}{\delta z}
$$

However, as δz has a real and imaginary component, there are different possible directions of δz in the complex plane. Then the derivative only makes sense, if $f^{\prime}(z)$ does not depend on the direction chosen. Looking at the fundamental directions with $z=x+\mathrm{i} y$ we find

$$
f^{\prime}(z)=\left\{\begin{array}{l}
\lim _{\delta x \rightarrow 0} \frac{f(x+\delta x, y)-f(x, y)}{\delta x}=\frac{\partial f(x, y)}{\partial x} \\
\lim _{\delta y \rightarrow 0} \frac{f(x, y+\delta y)-f(x, y)}{\mathrm{i} \delta y}=-\mathrm{i} \frac{\partial f(x, y)}{\partial y}
\end{array}\right.
$$

It is straightforward to see, that the elementary functions 3 . 4 .5) satisfy $\mathrm{i} \frac{\partial f(x, y)}{\partial x}=\frac{\partial f(x, y)}{\partial y}$ and consequently the complex derivative $f^{\prime}(z)$ exists for all power series. One can show:

A complex function $f(z)$ can be written as a power series, which converges $\quad \Leftrightarrow \quad$ any higher order derivatives $f^{n}(z)$ exist within a region around z_{0}.

The complex derivative $f^{\prime}(z)$, as well as for all z in a region around z_{0}.

These functions are called analytic or holomorphic, respectively, at z_{0}.
Note that the function $f(z)=z^{*}$ is not holomorphic as $\partial f / \partial x=1$ and $\partial f / \partial y=-\mathrm{i}$, so that the complex derivative does not exist at any point. The same holds for $f(z)=|z|$.

3 Contour integrals

The integral $\int_{\text {curve }} \mathrm{d} z f(z)$ of a complex function along a curve is analogously to a line integral in vector analysis. It is evaluated by parameterizing the curve as $z(t)$, where the real parameter t runs in the interval $t_{i}<t<t_{e}$. This provides (which can be seen as a definition of the complex integral)

$$
\int_{\text {curve }} \mathrm{d} z f(z)=\int_{t_{i}}^{t_{e}} \mathrm{~d} t \frac{\mathrm{~d} z(t)}{\mathrm{d} t} f(z(t))
$$

Integrals over a closed curve (called contour) \mathcal{C} are of particular relevance. Consider, e.g, the function $f(z)=z^{n}$ with integer n where \mathcal{C} is a circle going counterclockwise around the origin with radius R. We find with $z(t)=R \mathrm{e}^{\mathrm{i} t}$

$$
\int_{\mathcal{C}} \mathrm{d} z z^{n}=\int_{0}^{2 \pi} \mathrm{~d} t \mathrm{i} R \mathrm{e}^{\mathrm{i} t} R^{n} \mathrm{e}^{n \mathrm{i} t}= \begin{cases}0 & \text { for } n \neq-1 \\ 2 \pi \mathrm{i} & \text { for } n=-1\end{cases}
$$

This example suggests that singularities of the form $1 /\left(z-z_{j}\right)$ are related to non-zero contour integrals for contours around z_{i}. In order to quantify this, we call $R\left(z_{j}\right)$ the residue for the function $f(z)$ at the position z_{j} if

$$
f(z) \approx \frac{R\left(z_{i}\right)}{z-z_{j}} \text { for } z \approx z_{j}
$$

These residues enter a central theorem for contour integration, as proven in any textbook on complex functions:
Residue theorem: Consider a closed contour \mathcal{C} in the complex plane, which does not cross itself and has a counterclockwise orientation. The complex function $f(z)$ is holomorphic on the contour and in the area inside \mathcal{C} expect for a set of distinct points z_{i}. Then the contour integral can be evaluated as

$$
\begin{equation*}
\int_{\mathcal{C}} \mathrm{d} z f(z)=2 \pi \mathrm{i} \sum_{j \text { with } z_{i} \text { inside } \mathcal{C}} R\left(z_{j}\right) \tag{7}
\end{equation*}
$$

Note that singularities like

$$
f(z) \approx \frac{A}{\left(z-z_{j}\right)^{n}} \text { for } z \approx z_{j} \text { with } n \geq 2
$$

have $R\left(z_{i}\right)=0$ and do not contribute to the integral. As can be seen from the example given above, only singularities $\propto 1 /\left(z-z_{j}\right)$ matter!

If the function $f(z)$ is holomorphic on and within \mathcal{C}, we find in particular

$$
\begin{align*}
\text { Stokes Theorem } \int_{\mathcal{C}} \mathrm{d} z f(z) & =0 \tag{8}\\
\text { Cauchy's Integral Formula } \int_{\mathcal{C}} \mathrm{d} z \frac{f(z)}{z-z_{0}} & =2 \pi \mathrm{i} f\left(z_{0}\right) \tag{9}
\end{align*}
$$

which are typically proven individually before the residue theorem in textbooks.

4 Applying the residue theorem

Figure 3: Sketch of different contours

Let us, as an example, consider the function

$$
f(z)=\frac{1}{z^{2}+a^{2}}=\frac{1}{(z+\mathrm{i} a)(z-\mathrm{i} a)} \text { for } a \in \mathbb{R}
$$

which has poles at $z_{1}=\mathrm{i} a$ and $z_{2}=-\mathrm{i} a$ with the corresponding residues $R\left(z_{1}\right)=(2 \mathrm{i} a)^{-1}$ and $R\left(z_{2}\right)=(-2 \mathrm{i} a)^{-1}$. For the contours shown in Fig. 3, we find immediately

$$
\begin{aligned}
& \int_{\mathcal{C}_{1}} \mathrm{~d} z f(z)=0 \text { (no pole in } \mathcal{C}_{1} \text {) } \\
& \int_{\mathcal{C}_{2}} \mathrm{~d} z f(z)=\frac{\pi}{a} \text { (pole at } z_{1}=\mathrm{i} a \text {) } \\
& \int_{\mathcal{C}_{3}} \mathrm{~d} z f(z)=0 \text { (both residues add to zero) }
\end{aligned}
$$

Of particular interest is the contour \mathcal{C}_{2} in the limit $R \rightarrow \infty$. Parameterizing the straight line from $z=-R$ to $z=R$ by $z=x$ with $x \in[-R, R]$ and the half circle by $z=R \mathrm{e}^{\mathrm{i} \varphi}$ with $\varphi \in[0, \pi]$, we find

$$
\frac{\pi}{a}=\int_{\mathcal{C}_{2}} \mathrm{~d} z f(z)=\int_{-R}^{R} \mathrm{~d} x \frac{1}{x^{2}+a^{2}}+\underbrace{\int_{0}^{\pi} \mathrm{d} \varphi \frac{\mathrm{i} R \mathrm{e}^{\mathrm{i} \varphi}}{R^{2} \mathrm{e}^{2 i \varphi}+a^{2}}}_{\rightarrow 0 \text { for } R \rightarrow \infty}
$$

This provides us with the integral

$$
\int_{-\infty}^{\infty} \mathrm{d} x \frac{1}{x^{2}+a^{2}}=\frac{\pi}{a}
$$

While this result could have been obtained by direct integration using $\frac{\mathrm{darctan}(x / a)}{\mathrm{d} x}=\frac{a}{x^{2}+a^{2}}$, the method can be also used for more difficult functions, where no antiderivative exists. Such an example is evaluated in great detail at www. youtube.com/watch?v=MRLa5bk3_R4.

[^0]: ${ }^{1}$ Andreas.Wacker@fysik.lu.se This work is licensed under the Creative Commons License CC-BY. It can be downloaded from www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/

