# A Brief Overview on **Complex Functions**

Andreas Wacker<sup>1</sup> Mathematical Physics, Lund University March 3, 2015

#### **Complex functions** 1

Complex numbers z can be viewed as the composition of two real numbers (x, y), called the real part  $x = \operatorname{Re}\{z\}$  and the imaginary part  $y = \operatorname{Im}\{z\}$ , with two operations mapping arbitrary complex numbers  $z_1, z_2$  to a result z'.

Addition 
$$z' = z_1 + z_2$$
 where  $x' = x_1 + x_2$  and  $y' = y_1 + y_2$  (1)

Multiplication 
$$z' = z_1 z_2$$
 where  $x' = x_1 x_2 - y_1 y_2$  and  $y' = x_1 y_2 + y_1 x_2$  (2)

In practice one writes z = x + iy and applies the common rules for addition and multiplication together with  $i^2 = -1$ . We define the

conjugation 
$$z^* = \operatorname{Re}\{z\} - \operatorname{iIm}\{z\}$$
  
absolute value  $|z| = \sqrt{\operatorname{Re}\{z\}^2 + \operatorname{Im}\{z\}^2} = \sqrt{zz^*}$ 

1 lm{z} 0 2œ -1 -2 -1 0 2 3 -2 1 Re{z}

Figure 1: Plane of complex numbers

For illustrative purpose, complex numbers z are displayed in a plane spanned by the real and imaginary axis, see Fig. 1. They can be parameterized by |z|, which marks the distance from the origin, and the angle  $\varphi \in \mathbb{R}$  with the real axis:

$$z = |z|(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi}$$

The latter relation applies Euler's formula, which will be proven in Eq. (6).

A complex function z' = f(z) has the complex numbers both as arguments z and as function values z'. For arbitrary complex numbers  $\alpha = |\alpha| e^{i\phi}$ , we identify elementary examples for complex functions z' = f(z) as mappings in the complex plane which are defined on the basis of addition and multiplication of complex numbers:

$$f(z) = z + \alpha \text{ (a translation in the plane)}$$
(3)

$$f(z) = \alpha z \text{ (rotation by } \phi \text{ and stretching by } |\alpha|)$$
 (4)

$$f(z) = z^n$$
 (n-fold angle and expansion to  $|z'| = |z|^n$ ) (5)

Combining these functions, we obtain power series  $f(z) = \sum_{n} a_n z^n$  with arbitrary complex coefficients  $a_n$ . Thus, for any real function, which is described by a Taylor series, we can define





<sup>&</sup>lt;sup>1</sup> Andreas.Wacker@fysik.lu.se This work is licensed under the Creative Commons License CC-BY. It can be downloaded from www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/.

a more general complex function via the corresponding power series. E.g., we have the complex exponential function

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \, .$$

For the argument  $z = i\varphi$ , where  $\varphi \in \mathbb{R}$ , we thus find

Euler's formula: 
$$e^{i\varphi} = \sum_{j=0}^{\infty} (-1)^j \frac{\varphi^{2j}}{(2j)!} + i \sum_j (-1)^j \frac{\varphi^{2j+1}}{(2j+1)!} = \cos(\varphi) + i\sin(\varphi)$$
 (6)

where we used the Taylor expansions of the trigonometric functions. Now it can be shown (see any textbook on complex functions), that

For any power series  $\sum_{n} a_n z^n$  there is a specific convergence radius R, so that the power series converges for all |z| < R and diverges for |z| > R.

In particular, the convergence radius is infinite for the Taylor series of  $e^z$ , sin(z), and cos(z).



Figure 2: Convergence radius for the Taylor series  $S_{z_0}$  of the function  $\frac{1}{z-1}$  for different  $z_0$ 

In contrast the series

$$S_0 = -\sum_{n=0}^{\infty} z^n$$

has the convergence radius R = 1. This is related to the fact, that it is the Taylor expansion around  $z_0 = 0$  of the function  $f(z) = \frac{1}{z-1}$ , which has a pole at z = 1. However, one may do a Taylor expansion of f(z) around any other point  $z_0 \neq 1$  as well, resulting in

$$f(z) = S_{z_0} = -\sum_{n=0}^{\infty} \frac{1}{(1-z_0)^n} (z-z_0)^n$$

This power series has a convergence radius  $R = |1 - z_0|$ around  $z_0$ . Again, this is just the distance to the pole at z = 1. We conclude, that for each point  $z \neq 1$ , we may choose an appropriate value  $z_0$  so that the Taylor expansion  $S_{z_0}$  for  $f(z) = \frac{1}{z-1}$  converges in a finite range around z.

## 2 Complex derivative

Taking the derivative of a complex function is far more intricate than one would think. Its definition is, analogously to the common real functions:

$$f'(z) = \lim_{\delta z \to 0} \frac{f(z + \delta z) - f(z)}{\delta z}$$

However, as  $\delta z$  has a real and imaginary component, there are different possible directions of  $\delta z$  in the complex plane. Then the derivative only makes sense, if f'(z) does not depend on the direction chosen. Looking at the fundamental directions with z = x + iy we find

$$f'(z) = \begin{cases} \lim_{\delta x \to 0} \frac{f(x+\delta x,y)-f(x,y)}{\delta x} = \frac{\partial f(x,y)}{\partial x} \\ \lim_{\delta y \to 0} \frac{f(x,y+\delta y)-f(x,y)}{i\delta y} = -i\frac{\partial f(x,y)}{\partial y} \end{cases}$$

It is straightforward to see, that the elementary functions (3,4,5) satisfy  $i\frac{\partial f(x,y)}{\partial x} = \frac{\partial f(x,y)}{\partial y}$  and consequently the complex derivative f'(z) exists for all power series. One can show:

| A complex function $f(z)$ can be written as a power series, which converges                 | ⇔ | The complex derivative $f'(z)$ , as well as<br>any higher order derivatives $f^n(z)$ exist |
|---------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------|
| within a region around $z_0$ .                                                              |   | for all $z$ in a region around $z_0$ .                                                     |
| These functions are called <i>analytic</i> or <i>holomorphic</i> , respectively, at $z_0$ . |   |                                                                                            |

Note that the function  $f(z) = z^*$  is not holomorphic as  $\partial f/\partial x = 1$  and  $\partial f/\partial y = -i$ , so that the complex derivative does not exist at any point. The same holds for f(z) = |z|.

#### 3 Contour integrals

The integral  $\int_{\text{curve}} dz f(z)$  of a complex function along a curve is analogously to a line integral in vector analysis. It is evaluated by parameterizing the curve as z(t), where the real parameter t runs in the interval  $t_i < t < t_e$ . This provides (which can be seen as a definition of the complex integral)

$$\int_{\text{curve}} \mathrm{d}z\,f(z) = \int_{t_i}^{t_e} \mathrm{d}t\,\frac{\mathrm{d}z(t)}{\mathrm{d}t}f(z(t))$$

Integrals over a closed curve (called contour) C are of particular relevance. Consider, e.g, the function  $f(z) = z^n$  with integer n where C is a circle going counterclockwise around the origin with radius R. We find with  $z(t) = Re^{it}$ 

$$\int_{\mathcal{C}} \mathrm{d}z \, z^n = \int_0^{2\pi} \mathrm{d}t \, \mathrm{i}R \mathrm{e}^{\mathrm{i}t} \, R^n \mathrm{e}^{\mathrm{n}\mathrm{i}t} = \begin{cases} 0 & \text{for } n \neq -1\\ 2\pi \mathrm{i} & \text{for } n = -1 \end{cases}$$

This example suggests that singularities of the form  $1/(z - z_j)$  are related to non-zero contour integrals for contours around  $z_i$ . In order to quantify this, we call  $R(z_j)$  the residue for the function f(z) at the position  $z_j$  if

$$f(z) \approx \frac{R(z_i)}{z - z_j}$$
 for  $z \approx z_j$ 

These residues enter a central theorem for contour integration, as proven in any textbook on complex functions:

Residue theorem: Consider a closed contour C in the complex plane, which does not cross itself and has a counterclockwise orientation. The complex function f(z) is holomorphic on the contour and in the area inside C expect for a set of distinct points  $z_i$ . Then the contour integral can be evaluated as

$$\int_{\mathcal{C}} \mathrm{d}z \, f(z) = 2\pi \mathrm{i} \sum_{j \text{ with } z_i \text{ inside } \mathcal{C}} R(z_j) \tag{7}$$

Note that singularities like

$$f(z) \approx \frac{A}{(z-z_j)^n}$$
 for  $z \approx z_j$  with  $n \ge 2$ 

have  $R(z_i) = 0$  and do not contribute to the integral. As can be seen from the example given above, only singularities  $\propto 1/(z-z_i)$  matter!

If the function f(z) is holomorphic on and within  $\mathcal{C}$ , we find in particular

Stokes Theorem 
$$\int_{\mathcal{C}} \mathrm{d}z f(z) = 0$$
 (8)

Cauchy's Integral Formula 
$$\int_{\mathcal{C}} dz \frac{f(z)}{z - z_0} = 2\pi i f(z_0)$$
 (9)

which are typically proven individually before the residue theorem in textbooks.

## 4 Applying the residue theorem



Figure 3: Sketch of different contours

Let us, as an example, consider the function

$$f(z) = \frac{1}{z^2 + a^2} = \frac{1}{(z + ia)(z - ia)}$$
 for  $a \in \mathbb{R}$ 

which has poles at  $z_1 = ia$  and  $z_2 = -ia$  with the corresponding residues  $R(z_1) = (2ia)^{-1}$ and  $R(z_2) = (-2ia)^{-1}$ . For the contours shown in Fig. 3, we find immediately

$$\int_{\mathcal{C}_1} dz f(z) = 0 \text{ (no pole in } \mathcal{C}_1)$$
$$\int_{\mathcal{C}_2} dz f(z) = \frac{\pi}{a} \text{ (pole at } z_1 = ia)$$
$$\int_{\mathcal{C}_3} dz f(z) = 0 \text{ (both residues add to zero)}$$

Of particular interest is the contour  $C_2$  in the limit  $R \to \infty$ . Parameterizing the straight line from z = -R to z = R by z = x with  $x \in [-R, R]$  and the half circle by  $z = Re^{i\varphi}$  with  $\varphi \in [0, \pi]$ , we find

$$\frac{\pi}{a} = \int_{\mathcal{C}_2} \mathrm{d}z \, f(z) = \int_{-R}^{R} \mathrm{d}x \, \frac{1}{x^2 + a^2} + \underbrace{\int_{0}^{\pi} \mathrm{d}\varphi \, \frac{\mathrm{i}R\mathrm{e}^{\mathrm{i}\varphi}}{R^2\mathrm{e}^{2\mathrm{i}\varphi} + a^2}}_{\to 0 \text{ for } R \to \infty}$$

This provides us with the integral

$$\int_{-\infty}^{\infty} \mathrm{d}x \, \frac{1}{x^2 + a^2} = \frac{\pi}{a}$$

While this result could have been obtained by direct integration using  $\frac{d \arctan(x/a)}{dx} = \frac{a}{x^2+a^2}$ , the method can be also used for more difficult functions, where no antiderivative exists. Such an example is evaluated in great detail at www.youtube.com/watch?v=MRLa5bk3\_R4.