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1 Complex functions

Complex numbers z can be viewed as the composition of two real numbers (x, y), called the
real part x = Re{z} and the imaginary part y = Im{z}, with two operations mapping arbitrary
complex numbers z1, z2 to a result z′.

Addition z′ = z1 + z2 where x′ = x1 + x2 and y′ = y1 + y2 (1)

Multiplication z′ = z1z2 where x′ = x1x2 − y1y2 and y′ = x1y2 + y1x2 (2)

In practice one writes z = x+ iy and applies the common rules for addition and multiplication
together with i2 = −1. We define the

conjugation z∗ =Re{z} − iIm{z}
absolute value |z| =

√
Re{z}2 + Im{z}2 =

√
zz∗
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Figure 1: Plane of complex numbers

For illustrative purpose, complex numbers z are displayed
in a plane spanned by the real and imaginary axis, see
Fig. 1. They can be parameterized by |z|, which marks
the distance from the origin, and the angle ϕ ∈ R with
the real axis:

z = |z|(cosϕ+ i sinϕ) = |z|eiϕ

The latter relation applies Euler’s formula, which will be
proven in Eq. (6).

A complex function z′ = f(z) has the complex num-
bers both as arguments z and as function values z′. For
arbitrary complex numbers α = |α|eiφ, we identify el-
ementary examples for complex functions z′ = f(z) as
mappings in the complex plane which are defined on the
basis of addition and multiplication of complex numbers:

f(z) = z + α (a translation in the plane) (3)

f(z) = αz (rotation by φ and stretching by |α|) (4)

f(z) = zn (n-fold angle and expansion to |z′| = |z|n) (5)

Combining these functions, we obtain power series f(z) =
∑

n anz
n with arbitrary complex

coefficients an. Thus, for any real function, which is described by a Taylor series, we can define

1 Andreas.Wacker@fysik.lu.se This work is licensed under the Creative Commons License CC-BY. It can be
downloaded from www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/.

mailto:Andreas.Wacker@fysik.lu.se
http://creativecommons.org/licenses/by/4.0/
http://www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/index.html


Complex functions, Andreas Wacker, Lund University, March 3, 2015 2

a more general complex function via the corresponding power series. E.g., we have the complex
exponential function

ez =
∞∑
n=0

zn

n!
.

For the argument z = iϕ, where ϕ ∈ R, we thus find

Euler’s formula: eiϕ =
∞∑
j=0

(−1)j
ϕ2j

(2j)!
+ i
∑
j

(−1)j
ϕ2j+1

(2j + 1)!
= cos(ϕ) + i sin(ϕ) (6)

where we used the Taylor expansions of the trigonometric functions. Now it can be shown (see
any textbook on complex functions), that

For any power series
∑

n anz
n there is a specific convergence radius R, so that the power series

converges for all |z| < R and diverges for |z| > R.

In particular, the convergence radius is infinite for the Taylor series of ez, sin(z), and cos(z).
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Figure 2: Convergence radius for the
Taylor series Sz0 of the function 1
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In contrast the series

S0 = −
∞∑
n=0

zn

has the convergence radius R = 1. This is related to the
fact, that it is the Taylor expansion around z0 = 0 of the
function f(z) = 1

z−1 , which has a pole at z = 1. However,
one may do a Taylor expansion of f(z) around any other
point z0 6= 1 as well, resulting in

f(z) = Sz0 = −
∞∑
n=0

1

(1− z0)n
(z − z0)n

This power series has a convergence radius R = |1 − z0|
around z0. Again, this is just the distance to the pole
at z = 1. We conclude, that for each point z 6= 1, we
may choose an appropriate value z0 so that the Taylor
expansion Sz0 for f(z) = 1

z−1 converges in a finite range
around z.

2 Complex derivative

Taking the derivative of a complex function is far more intricate than one would think. Its
definition is, analogously to the common real functions:

f ′(z) = lim
δz→0

f(z + δz)− f(z)

δz

However, as δz has a real and imaginary component, there are different possible directions of
δz in the complex plane. Then the derivative only makes sense, if f ′(z) does not depend on
the direction chosen. Looking at the fundamental directions with z = x+ iy we find

f ′(z) =

{
limδx→0

f(x+δx,y)−f(x,y)
δx

= ∂f(x,y)
∂x

limδy→0
f(x,y+δy)−f(x,y)

iδy
= −i∂f(x,y)

∂y
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It is straightforward to see, that the elementary functions (3,4,5) satisfy i∂f(x,y)
∂x

= ∂f(x,y)
∂y

and

consequently the complex derivative f ′(z) exists for all power series. One can show:

A complex function f(z) can be writ-
ten as a power series, which converges
within a region around z0.

⇔
The complex derivative f ′(z), as well as
any higher order derivatives fn(z) exist
for all z in a region around z0.

These functions are called analytic or holomorphic, respectively, at z0.

Note that the function f(z) = z∗ is not holomorphic as ∂f/∂x = 1 and ∂f/∂y = −i, so that
the complex derivative does not exist at any point. The same holds for f(z) = |z|.

3 Contour integrals

The integral
∫
curve

dz f(z) of a complex function along a curve is analogously to a line integral in
vector analysis. It is evaluated by parameterizing the curve as z(t), where the real parameter t
runs in the interval ti < t < te. This provides (which can be seen as a definition of the complex
integral) ∫

curve

dz f(z) =

∫ te

ti

dt
dz(t)

dt
f(z(t))

Integrals over a closed curve (called contour) C are of particular relevance. Consider, e.g, the
function f(z) = zn with integer n where C is a circle going counterclockwise around the origin
with radius R. We find with z(t) = Reit∫

C
dz zn =

∫ 2π

0

dt iReitRnenit =

{
0 for n 6= −1
2πi for n = −1

This example suggests that singularities of the form 1/(z − zj) are related to non-zero contour
integrals for contours around zi. In order to quantify this, we call R(zj) the residue for the
function f(z) at the position zj if

f(z) ≈ R(zi)

z − zj
for z ≈ zj

These residues enter a central theorem for contour integration, as proven in any textbook on
complex functions:

Residue theorem: Consider a closed contour C in the complex plane, which does not cross
itself and has a counterclockwise orientation. The complex function f(z) is holomorphic on
the contour and in the area inside C expect for a set of distinct points zi. Then the contour
integral can be evaluated as ∫

C
dz f(z) = 2πi

∑
j with zi inside C

R(zj) (7)

Note that singularities like

f(z) ≈ A

(z − zj)n
for z ≈ zj with n ≥ 2

have R(zi) = 0 and do not contribute to the integral. As can be seen from the example given
above, only singularities ∝ 1/(z − zj) matter!
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If the function f(z) is holomorphic on and within C, we find in particular

Stokes Theorem

∫
C

dz f(z) = 0 (8)

Cauchy’s Integral Formula

∫
C

dz
f(z)

z − z0
= 2πif(z0) (9)

which are typically proven individually before the residue theorem in textbooks.

4 Applying the residue theorem
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Figure 3: Sketch of different contours

Let us, as an example, consider the function

f(z) =
1

z2 + a2
=

1

(z + ia)(z − ia)
for a ∈ R

which has poles at z1 = ia and z2 = −ia with
the corresponding residues R(z1) = (2ia)−1

and R(z2) = (−2ia)−1. For the contours
shown in Fig. 3, we find immediately∫
C1

dz f(z) =0 (no pole in C1)∫
C2

dz f(z) =
π

a
(pole at z1 = ia)∫

C3
dz f(z) =0 (both residues add to zero)

Of particular interest is the contour C2 in the limit R → ∞. Parameterizing the straight line
from z = −R to z = R by z = x with x ∈ [−R,R] and the half circle by z = Reiϕ with
ϕ ∈ [0, π], we find

π

a
=

∫
C2

dz f(z) =

∫ R

−R
dx

1

x2 + a2
+

∫ π

0

dϕ
iReiϕ

R2e2iϕ + a2︸ ︷︷ ︸
→0 for R→∞

This provides us with the integral ∫ ∞
−∞

dx
1

x2 + a2
=
π

a

While this result could have been obtained by direct integration using d arctan(x/a)
dx

= a
x2+a2

, the
method can be also used for more difficult functions, where no antiderivative exists. Such an
example is evaluated in great detail at www.youtube.com/watch?v=MRLa5bk3_R4.

www.youtube.com/watch?v=MRLa5bk3_R4
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