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1 Complex functions

Complex numbers z can be viewed as the composition of two real numbers (z,y), called the

real part x = Re{z} and the imaginary part y = Im{z}, with two operations mapping arbitrary
complex numbers z1, 2o to a result z’.

Addition 2/ = 2, + 2z where 2’ = z1 + x5 and ' = y; + o (1)

Multiplication 2z’ = 212, where 2’ = z125 — 1192 and v = x1ys + Y175 (2)

In practice one writes z = x + iy and applies the common rules for addition and multiplication
together with i> = —1. We define the

conjugation z* =Re{z} — ilm{z}
absolute value |z| =v/Re{z}2 + Im{z}2 = v/22*

For illustrative purpose, complex numbers z are displayed
3 , , — in a plane spanned by the real and imaginary axis, see

Fig.[l] They can be parameterized by |z|, which marks
i . ] the distance from the origin, and the angle ¢ € R with
1 z=11+i i the real axis:
—_— ¢
‘—E—* 0 \% z = |z|(cos g +isinp) = |z]e”
s 20 . The latter relation applies Euler’s formula, which will be
ol 5 proven in Eq. ().
z'=2i A complex function 2’ = f(z) has the complex num-
'?33 _|2 _'1 0 |1 |2 3 bers both as arguments z and as function values z’. For
Re{z} arbitrary complex numbers a = |ale'?, we identify el-
ementary examples for complex functions 2/ = f(z) as

Figure 1: Plane of complex numbers mappings in the complex plane which are defined on the
basis of addition and multiplication of complex numbers:

f(2) = z+4 « (atranslation in the plane) (3)
f(2) = az (rotation by ¢ and stretching by |a]) (4)
f(z) = 2" (n-fold angle and expansion to |2'| = |z|") (5)

Combining these functions, we obtain power series f(z) = > a,2™ with arbitrary complex
coefficients a,,. Thus, for any real function, which is described by a Taylor series, we can define
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a more general complex function via the corresponding power series. E.g., we have the complex
exponential function

For the argument z = iy, where ¢ € R, we thus find

Euler’s formula: e'¥ = Z( ‘
pr 2] +1

251 = cos(p) +isin(p)  (6)

where we used the Taylor expansions of the trigonometric functions. Now it can be shown (see
any textbook on complex functions), that

For any power series ) a,2" there is a specific convergence radius R, so that the power series
converges for all |z| < R and diverges for |z| > R.

In particular, the convergence radius is infinite for the Taylor series of e, sin(z), and cos(z).

In contrast the series

S():—Zz"

n=0

N W H
T
I

has the convergence radius R = 1. This is related to the
fact, that it is the Taylor expansion around z; = 0 of the
function f(z) = ﬁ, which has a pole at 2 = 1. However,
one may do a Taylor expansion of f(z) around any other
point zg # 1 as well, resulting in

oo
n

1 J(2) = 52 = Z1—z0 (2 = 20)

Re{z} =1

This power series has a convergence radius R = |1 — z|

Figure 2: Convergence radius for the  pround 2. Again, this is just the distance to the pole
Taylor series S, of the function ﬁ at z = 1. We conclude, that for each point z # 1, we
for different z may choose an appropriate value zy so that the Taylor
expansion S, for f(z) = converges in a finite range
around z.

1
z—1

2 Complex derivative

Taking the derivative of a complex function is far more intricate than one would think. Its
definition is, analogously to the common real functions:

o) =t T = FC)

6z—0 0z

However, as 0z has a real and imaginary component, there are different possible directions of
dz in the complex plane. Then the derivative only makes sense, if f’(z) does not depend on
the direction chosen. Looking at the fundamental directions with z = x + iy we find

: fletdzy)—f(zy) _  Of(zy)
f/(Z) _ limg, oz - Oz
dy—0 idy oy
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It is straightforward to see, that the elementary functions satisfy i2f éﬁ’y) — 9 g;,y) and

consequently the complex derivative f'(z) exists for all power series. One can show:

A complex function f(z) can be writ- The complex derivative f'(z), as well as
ten as a power series, which converges & any higher order derivatives f™(z) exist
within a region around zj. for all z in a region around zj.

These functions are called analytic or holomorphic, respectively, at z.

Note that the function f(z) = z* is not holomorphic as 0f/0x = 1 and 9f /0y = —i, so that
the complex derivative does not exist at any point. The same holds for f(z) = |z|.

3 Contour integrals

The integral fcurve dz f(z) of a complex function along a curve is analogously to a line integral in
vector analysis. It is evaluated by parameterizing the curve as z(t), where the real parameter ¢
runs in the interval ¢; < t < t.. This provides (which can be seen as a definition of the complex

integral) "
[ aere = [aeEl )

Integrals over a closed curve (called contour) C are of particular relevance. Consider, e.g, the

function f(z) = 2" with integer n where C is a circle going counterclockwise around the origin
with radius R. We find with z(¢) = Re'’

2w
/dzzn :/ dtiRel RMeMt — { 0 for n # —1
¢ 0

21 form = —1

This example suggests that singularities of the form 1/(z — z;) are related to non-zero contour
integrals for contours around z;. In order to quantify this, we call R(z;) the residue for the
function f(z) at the position z; if

R(2)

Z—Zj

f(z) =

for z = z;

These residues enter a central theorem for contour integration, as proven in any textbook on
complex functions:

Residue theorem: Consider a closed contour C in the complex plane, which does not cross
itself and has a counterclockwise orientation. The complex function f(z) is holomorphic on
the contour and in the area inside C expect for a set of distinct points z;. Then the contour
integral can be evaluated as

/C dfe)=2m S R() (7)

j with z; inside C

Note that singularities like

A
f(z)szorzzzjwithn22
have R(z;) = 0 and do not contribute to the integral. As can be seen from the example given
above, only singularities o 1/(z — z;) matter!
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If the function f(z) is holomorphic on and within C, we find in particular

Stokes Theorem /dz f(z) = 0 (8)
c
: f& o,
Cauchy’s Integral Formula [ dz——— = 27if(2o) (9)
I zZ— 20

which are typically proven individually before the residue theorem in textbooks.

4 Applying the residue theorem

Let us, as an example, consider the function

1 1
/) 224+a?  (z+1ia)(z —1ia) ora
~ which has poles at z; = ia and 25 = —ia with
£ the corresponding residues R(z1) = (2ia)™
Ioar c ¢ 7 and R(z3) = (—2ia)~!. For the contours
. 3 ] shown in Fig. 3, we find immediately
ar / dz f(z) =0 (no pole in C;)
| L c
R R 1 -
x=Re{z} / dz f(z) =— (pole at z; = ia)
C a

Figure 3: Sketch of different contours / dz f(2) =0 (both residues add to zero)

C3

Of particular interest is the contour Cs in the limit R — oo. Parameterizing the straight line
from z = —R to 2 = R by z = x with z € [—-R, R] and the half circle by z = Re'¥ with

@ € [0, 7], we find
R ” C
T 1 iRe'¥
a /c2 2 f2) /_R . x?+a? + /0 v R2e2l + g2

TV
—0 for R—o0

This provides us with the integral

o 1 T

dor——" ="

/_ o 2+a® a
darctan(z/a) _ @ the

While this result could have been obtained by direct integration using T = rraT
method can be also used for more difficult functions, where no antiderivative exists. Such an
example is evaluated in great detail at www.youtube.com/watch?v=MRLabbk3_R4.


www.youtube.com/watch?v=MRLa5bk3_R4
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