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Fermi’s golden rule 2 is a simple expression for the transition probabilities between states of a
quantum system, which are subjected to a perturbation. It is used for a large variety of physical
systems covering, e.g., nuclear reactions, optical transitions, or scattering of electrons in solids.

1 Main results

We consider a quantum system described by an Hamiltonian Ĥ0 with known eigenstates |c0〉,
i.e.

Ĥ0|c0〉 = E0
c |c0〉

Now we raise the question, how a small extra term V̂ (t) (called perturbation) affects the system.
In contrast to Ĥ0, the perturbation can be time-dependent, but it may also be constant, i.e.
V̂ (t) = V̂ . Examples for perturbations are an additional electric field F with V̂ = eF ẑ,
or the presence of an electromagnetic wave with frequency ω, coupling to the electron via
V̂ (t) ∝ cos(ωt) (this example is treated explicitly in Section 4). Thus we have the Hamiltonian

Ĥ(t) = Ĥ0 + V̂ (t) (1)

In contrast to the stationary perturbation theory, where approximations for the eigenstates
of the perturbed Hamiltonian are evaluated, we consider here the time dependence |Ψ(t)〉 of
a system, which is prepared in the state |Ψ(0)〉 = |a0〉 at t = 0. Of particular interest is the
probability Pb(t) to find the system in another eigenstate |b0〉 of Ĥ0 at a later time t, which can
be evaluated via

Pb(t) = |〈b0|Ψ(t)〉|2 for |Ψ(0)〉 = |a0〉 (2)

Without the perturbation (i.e. V̂ = 0), the eigenstate |a0〉 provides the trivial time dependence
|Ψ(t)〉 = e−iE0

at/~|a0〉. Thus Pb(t) = 0 for b 6= a and Pa(t) = 1 and the system stays in state
|a0〉 forever. However, for a finite perturbation V̂ (t), the state |a0〉 is no longer an eigenstate of
the full Hamiltonian (1) and the time dependent solution of the Schrödinger equation provides
admixtures to the different states |b0〉.
The central result is that for weak perturbations and long times, the transition probability
Pb(t) raises linear in time as Pb(t) = Γa→b × t for b 6= a. This transition rate Γa→b from state a
to state b is given by:

1 Andreas.Wacker@fysik.lu.se This work is licensed under the Creative Commons License CC-BY. It can be
downloaded from www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/.

2The concept was developed by P.A.M. Dirac, Proc. Royal Soc. Lond. A Mat. 114, 243 (1927). E. Fermi
later coined the name golden rule, as he heavily used it for nuclear reactions.
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Fermi’s golden rule:
For a time-independent perturbation potential V̂ the transition rate from state a to state b is
given by

Γa→b =
2π

~
|〈b0|V̂ |a0〉|2δ(E0

b − E0
a) (3)

Thus transitions are only possible if the initial and final state have the same energy.
For a periodic perturbation potential V̂ (t) = F̂ e−iωt + F̂ †eiωt with frequency ω one obtains

Γa→b =
2π

~
|〈b0|F̂ |a0〉|2δ(E0

b − E0
a − ~ω) +

2π

~
|〈b0|F̂ †|a0〉|2δ(E0

b − E0
a + ~ω) . (4)

In this case transitions are only possible if the energy of the final state is ~ω higher/lower
than the energy of the initial state, This corresponds to the absorption/emission of the energy
quantum ~ω from/to the oscillating field, respectively.

This will be proven in the subsequent section 2. Note that the delta-function appearing in
Fermi’s golden rule requires an integral over one of the arguments to be of any meaning. Thus
Fermi’s golden rule is only applicable if there is either a continuum of final states or a continuum
of frequencies ω to integrate over. Otherwise no linear time dependence Pb(t) = Γa→bt is
recovered. E.g., for the case of two-level system in a strong monochromatic laser field one
observes an oscillatory behavior Pb(t) ∝ sin2(ΩRt/2), called Rabi oscillation (which is not
further discussed here).

2 Time-dependent perturbation theory

Using the completeness of the eigenstates of Ĥ0 an arbitrary quantum state can be written as

|Ψ(t)〉 =
∑
c

gc(t)e
−iE0

c t/~|c0〉 (5)

where the phase factor e−iE0
c t/~ has been introduced for convenience3. This state has to satisfy

the Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ(t)|Ψ(t) .

For the full Hamiltonian (1) the term Ĥ0 cancels with the time-derivatives of the factors e−iE0
c t/~

resulting in ∑
c

i~e−iE0
c t/~∂gc(t)

∂t
|c0〉 =

∑
c

gc(t)e
−iE0

c t/~V̂ (t)|c0〉 . (6)

Multiplying by 〈b0|eiE0
b t/~ from the left provides

i~
∂gb(t)

∂t
=
∑
c

ei(E0
b−E

0
c )t/~〈b0|V̂ (t)|c0〉gc(t)

or after integration

gb(t) = gb(0) +
1

i~

∫ t

0

dt′
∑
c

ei(E0
b−E

0
c )t′/~〈b0|V̂ (t′)|c0〉gc(t′) . (7)

3The generalization of this ad-hoc approach is the interaction representation
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With the initial condition, that the system is in state |a0〉 at time t = 0, we have gc(0) = 0 for
c 6= a and ga(0) = 1. Thus Eq. (7) provides gc(t) = δc,a + O(V ). Inserting this into gc(t

′) on
the left hand side of Eq. (7) we find.

gb(t) =
1

i~

∫ t

0

dt′ei(E0
b−E

0
a)t′/~〈b0|V̂ (t′)|a0〉+O(V 2) for b 6= a (8)

The t′-integral is easily solvable for fictitious perturbations of the form

V̂ (t) = F̂ e−iωt

resulting in the transition-probability

Pb(t) = |〈b0|Ψ(t)〉|2 = |gb(t)|2 = |〈b0|F̂ |a0〉|2Dt

(
E0
b − E0

a − ~ω
)

for b 6= a (9)

with the auxiliary function

Dt(∆E) =

∣∣∣∣1~
∫ t

0

dt′ei∆Et′/~
∣∣∣∣2 =

∣∣∣∣ei∆Et/~ − 1

i∆E

∣∣∣∣2 =

∣∣∣∣∣ei ∆E
2
t/~ ei ∆E

2
t/~ − e−i ∆E

2
t/~

i∆E

∣∣∣∣∣
2

=
4 sin2

(
∆E

2
t/~
)

∆E2

(10)
Figure 1 shows that Dt(∆E) has large values only for −2π~/t < ∆E < 2π~/t, where the
maximum Dt(0) = t2/~2 increases rapidly with time. Furthermore a glance to a table of
integrals4 gives

∫∞
−∞ dxDt(x) = 2πt/~. Thus we define the function

δt(∆E) =
~

2πt
Dt (∆E)

which is a representation of the δ-function in the limit t → ∞. Now we consider two typical
cases:

(i) Setting ω = 0, i.e. considering a constant potential V̂ (t) = V̂ , we obtain from Eq. (9)

Γa→b(t) =
Pa→b(t)

t
=

2π

~
|〈b0|V̂ |a0〉|2δt(E0

b − E0
a) (11)

(ii) Now we consider periodic perturbation potentials. Being a part of the Hamiltonian, V̂ (t)
is a Hermitian operator, The most general form of a Hermitian operator containing a single
frequency component ω is

V̂ (t) = F̂ e−iωt + F̂ †eiωt

Treating both terms separately (which is possible for t� ω/2π, where the δt functions do not
overlap) we obtain

Γa→b(t) =
2π

~
|〈b0|F̂ |a0〉|2δt(E0

b − E0
a − ~ω) +

2π

~
|〈b0|F̂ †|a0〉|2δt(E0

b − E0
a + ~ω) . (12)

In both cases the function δt(∆E) can be replaced by a δ-function, resulting in Eqs. (3,4), if
the following conditions are met:

• There is an integration over a continuum of final states |b0〉 or frequencies ω, as the
δ-function is only properly defined together with an integral over its argument.

• The observation time t is sufficiently long, so that the matrix element |〈b0|V̂ |a0〉| (or
|〈b0|F̂ω|a0〉| ) is approximately constant within the energy range |E0

b −E0
a ± ~ω| . 2π~/t

of the allowed final states b (or frequencies ω).

• The perturbation V̂ is sufficiently weak, so that the probability to reach any possible
state

∑
b6=a Pb(t) =

∑
b 6=a Γa→bt does not reach unity within the observation time.

4Eq. (3.741(3)) in D. Zwillinger: Table of Integrals, Series and Products (Academic Press, Waltham 2015)
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Figure 1: The function Dt(∆E) from Eq. (10). As ~ = 0.66eV/fs the energy scale is 0.66 meV
for t = 1 ps (semiconductors), 0.66 eV for t = 1 fs (molecules), and 0.66 MeV for t = 10−21 s
(high energy physics).

3 Example: β-decay of the neutron

Nuclei are eigenstates of the strong interaction but not necessarily eigenstates of the weak
interaction, which causes transitions between different nuclei. For the β-decay of the neutron
the following many-particle states are of relevance:

• A neutron (in rest):
State |a0〉 with energy E0

a = mnc
2

• A proton (almost in rest) + free electron with wave vector ke + free antineutrino with
wave vector kν :
State |b0〉 = |ke,kν〉 with energy

E0
b = mpc

2 +
√
m2
ec

4 + ~2c2k2
e +

√
m2
νc

4 + ~2c2k2
ν

where we take into account a possible finite mass mν of the neutrinos.5

In addition we assume that the matrix element |〈ke,kν |V̂weak interaction|a0〉|2 = g2 is constant.
(This is a point-interaction, as assumed by Enrico Fermi 1934.) In a typically experiment, the
momentum pe = ~ke of the final electron is measured. Thus, we want to evaluate the transition
rate to a final state ke with arbitrary kν

Γa→ke =

∫
d3kν︸︷︷︸

4πk2
νdkν

2π

~
g2δ

(mp −mn)c2 +
√
m2
ec

4 + p2
ec

2︸ ︷︷ ︸
=−A(pe)

+
√
m2
νc

4 + ~2c2k2
ν


5As indicated by Neutrino oscillations. Nobel price 2002 to R. Davis, M. Koshiba, and R. Giacconi, http:

//nobelprize.org/nobel_prizes/physics/laureates/2002/phyadv02.pdf)

http://nobelprize.org/nobel_prizes/physics/laureates/2002/phyadv02.pdf
http://nobelprize.org/nobel_prizes/physics/laureates/2002/phyadv02.pdf
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Figure 2: Probability (in arbi-
trary units) to find a specific mo-
mentum pe of the electron after
the neutron decay assuming dif-
ferent masses of the antineutrino.

Now, we use the relation∫ b

a

dx g(x)δ(f(x)) =
∑
i

g(xi)

|f ′(xi)|

where the xi satisfy f(xi) = 0 within the interval a < xi < b.
and define the step function by Θ(x) = 1 for x > 0 and
Θ(x) = 0 for x < 0. After a few lines of algebra we find:

Γa→ke =
8π2g2

~4c3
A(pe)

√
A(pe)2 −m2

νc
4 Θ(A(pe)−mνc

2)

which shows a characteristic momentum dependence for
small A (i.e. close to the maximum electron momentum), as
displayed in Fig. 2. Fitting to experimental data provides
a rather small upper limit for the neutrino mass, currently
2eV/c2 from the β-decay of Tritium6. (Note that for such
small energies the kinetic energy of the final nucleus be-

comes relevant, which was neglected for simplicity here.)

4 Example: Radiation transitions

Consider a hydrogen atom with the Hamilton operator

Ĥ0 =
p̂2

2me

− e2

4πε0|r|

where the eigenstates are given by |a0〉 = |n, l,m,ms〉 with principal quantum number n, and
the quantum numbers for total angular momentum l, its projection to the z axis ml, as well as
spin projection ms. An electromagnetic wave (light) with frequency ω can be described by the
electromagnetic potentials (in Coulomb gauge divA = 0)

A(r, t) =
1

ω
E0(ω) cos(k(ω) · r− ωt) and ϕ(r, t) = 0

The Hamilton-Operator reads (here e > 0 is the elementary charge).

Ĥ =
[p̂ + eA(r, t)]2

2me

− e2

4πε0|r|
+ ge

e

2me

Ŝ ·B(r, t)

=Ĥ0 +
e

meω
E0(ω) · p̂1

2

(
ei(k(ω)·r−ωt) + e−i(k(ω)·r−ωt))

+ ge
e

2me

Ŝ ·
[
k(ω)× E0(ω)

i

2ω

(
ei(k(ω)·r−ωt) − e−i(k(ω)·r−ωt))]+O(E2

0)

For visible light we have k = 2π/λ ∼ 2π/600nm. In contrast the atomic size is of the or-
der ∼ aB = 0.0529 nm, and atomic momenta are of the order ~/aB. Thus terms with kr
(in the exponent) as well as the spin-term (Sk ∼ ~2π/600nm � p) are negligible in a first
approximation.

The transition rate between two atomic levels a and b is given by Eq. (12)

Γa→b(t) =
2π

~

∣∣∣∣ e

2meω
〈b0|E0(ω) · p̂|a0〉

∣∣∣∣2 [δt(E0
b − E0

a − ~ω) + δt(E
0
b − E0

a + ~ω)
]

6according to the Particle Data Group, W-M Yao et al., J. Phys. G: Nucl. Part. Phys. 33 1 (2006)
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Thus, the radiation field is exchanging energy in portions of ~ω (photons) with the atom.
Accordingly the processes are called absorption and emission of a photon by the atoms.

The size of the transition rate is given by the matrix element, which for |a0〉 = |n, l,m,ms〉 and
|b0〉 = |n′, l′,m′,m′s〉 is given by

〈b0|p̂|a0〉 = 〈n′, l′,m′,m′s|me
i

~
[Ĥ0, r̂]|n, l,m,ms〉 = me

i

~
(E0

n′l′ − E0
nl) 〈n′, l′,m′,m′s|r̂|n, l,m,ms〉︸ ︷︷ ︸

=− 1
e
dba

Using the properties of the spherical harmonics, one finds that the dipole matrix element dba = 0
vanishes unless l′ = l ± 1, m′s = ms and m′ =∈ {m− 1,m,m+ 1}.

For an atom interacting with electromagnetic radiation of frequency ω the transition rate
reads

Γa→b =
2π

~

∣∣∣∣E0 · dba
2

∣∣∣∣2 [δt(E0
b − E0

a − ~ω) + δt(E
0
b − E0

a + ~ω)
]
.

between the atomic levels a and b in dipole approximation (eik·r ≈ 1 and ~k � p). The
possible processes are the induced absorption and the induced emission of a photon.
Both processes exhibit the same rate. The selection rules are ∆l = ±1, ∆m = 0,±1 and
∆ms = 0.

Remarks: Taking into account the quantization of the electromagnetic field we have F̂ † 6= F̂
and the transition rates differ for emission and absorption. This can be described by the
additional spontaneous emission, which is also possible if the electromagnetic field is in its
ground state (the vacuum fluctuations of the field constitute the perturbation potential).

If one takes into account higher order terms eik·r ≈ 1+ik·r, one obtains the electrical quadrupole
and magnetic dipole transitions. The latter also include the spin-term in Eq. (4). In both cases
one obtains different selection rules than for dipole approximation but the rates are several
orders of magnitude smaller because of the reduced matrix elements.
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