# Operator treatment of harmonic oscillator 

Andreas Wacker ${ }^{1}$

Mathematical Physics, Lund University
LUND
UNIVERSITY
September 6, 2017

## 1 General properties

The Hamilton operator of the harmonic oscillator reads

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \tag{1}
\end{equation*}
$$

Here we want to calculate the eigenvalues in an algebraic way.
We define the lowering operator

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2 m \hbar \omega}}(\mathrm{i} \hat{p}+m \omega \hat{x}) \tag{2}
\end{equation*}
$$

Note that, in contrast to $\hat{p}$ and $\hat{x}, \hat{a}$ is not Hermitian and $\hat{a}^{\dagger}$ is called raising operator. They obey the essential commutator relation

$$
\begin{equation*}
\left[\hat{a}, \hat{a}^{\dagger}\right]=\hat{a} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a}=1 \tag{3}
\end{equation*}
$$

We find easily

$$
\begin{equation*}
\hat{x}=\sqrt{\frac{\hbar}{2 m \omega}}\left(\hat{a}+\hat{a}^{\dagger}\right) \quad \hat{p}=\sqrt{\frac{m \hbar \omega}{2}} \mathrm{i}\left(\hat{a}^{\dagger}-\hat{a}\right) \tag{4}
\end{equation*}
$$

Inserting into Eq. (1) we obtain

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) \tag{5}
\end{equation*}
$$

Thus, the eigenstates of the harmonic oscillator correspond to the eigenstates of the number operator $\hat{N}=\hat{a}^{\dagger} \hat{a}$. Let now $|n\rangle$ be an eigenstate of $\hat{N}$ with eigenvalue $n$. As $\hat{N}$ is Hermitian, $n$ is a real number (later we will find, that $n \in \mathbb{N}$ ). Lets consider the state $|\beta\rangle=\hat{a}|n\rangle$ We find

$$
\hat{N}|\beta\rangle=\hat{a}^{\dagger} \hat{a} \hat{a}|n\rangle=\left(\hat{a} \hat{a}^{\dagger}-1\right) \hat{a}|n\rangle=\hat{a} n|n\rangle-|\beta\rangle=(n-1)|\beta\rangle
$$

Thus $|\beta\rangle$ is a further eigenstate of $\hat{N}$ with eigenvalue $n-1$. The norm of $|\beta\rangle$ is

$$
\langle\beta \mid \beta\rangle=\langle n| \hat{a}^{\dagger} \hat{a}|n\rangle=n
$$

As $\langle\beta \mid \beta\rangle$ cannot be negative, we find that the eigenvalues of the number operator satisfy $n \geq 0$. Thus we define the normalized state $|n-1\rangle$ by

$$
\begin{equation*}
|n-1\rangle=\frac{1}{\sqrt{n}}|\beta\rangle=\frac{1}{\sqrt{n}} \hat{a}|n\rangle \quad \text { for } \quad n \neq 0 \tag{6}
\end{equation*}
$$

[^0]By repeating this operation we can generate a chain of states $|n\rangle,|n-1\rangle,|n-2\rangle, \ldots$ which are all eigenstates of the number operator with eigenvalues $n, n-1, n-2, \ldots$, respectively. As the eigenvalues of the number operator cannot be negative, this chain must terminate with a certain state $|n-h\rangle$ where $h \in \mathbb{N}$. The condition given in Eq. (6) implies that termination is only possible if $n-h=0$ holds. Thus we conclude, that $n=h$ is a natural number.
Analogously to Eq. (6), we can show that

$$
|n+1\rangle=\frac{1}{\sqrt{n+1}} \hat{a}^{\dagger}|n\rangle
$$

is a further normalized eigenstate of $\hat{N}$ with eigenvalue $n+1$. Thus for each $n$, we can generate an infinite chain of eigenstates $|n\rangle,|n+1\rangle,|n+2\rangle, \ldots$, so that all natural numbers $n$ are possible eigenvalues of $\hat{N}$.

The eigenstates $|n\rangle$ of the number operator $\hat{N}=\hat{a}^{\dagger} \hat{a}$ satisfy:

$$
\begin{aligned}
\hat{N}|n\rangle & =n|n\rangle \quad \text { with } \quad n \in \mathbb{N} \\
|n-1\rangle & =\frac{1}{\sqrt{n}} \hat{a}|n\rangle \quad \text { for } \quad n \neq 0 \\
|n+1\rangle & =\frac{1}{\sqrt{n+1}} \hat{a}^{\dagger}|n\rangle
\end{aligned}
$$

Simultaneously, the states $|n\rangle$ are the eigenstates of the harmonic oscillator

$$
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)
$$

with energies $\hbar \omega\left(n+\frac{1}{2}\right)$, respectively.

## 2 Heisenberg picture

In the Heisenberg picture the time dependence of the operators is given by

$$
\frac{\mathrm{d} \hat{O}(t)}{\mathrm{d} t}=\frac{\mathrm{i}}{\hbar}[\hat{H}, \hat{O}]
$$

if the operator has no explicit time-dependence. Thus we find for the lowering operator :

$$
\frac{\mathrm{d} \hat{a}(t)}{\mathrm{d} t}=\mathrm{i} \omega\left[\hat{a}^{\dagger} \hat{a}, \hat{a}\right]=-\mathrm{i} \omega \hat{a} \quad \Rightarrow \quad \hat{a}(t)=\hat{a}(0) \mathrm{e}^{-\mathrm{i} \omega t}
$$

and similarly $\hat{a}^{\dagger}(t)=\hat{a}^{\dagger}(0) \mathrm{e}^{\mathrm{i} \omega t}$

## 3 Coherent States

The energy eigenstates $|n\rangle$ provide the expectation values (Hint: use Eq. (4) and the orthonormality for different eigenstates of $\hat{H}$ )

$$
\langle n| \hat{x}|n\rangle=0 \quad \text { and } \quad\langle n| \hat{p}|n\rangle=0
$$

Thus they do not resemble a classical oscillation, where $x$ and $p$ oscillate in time. However there are states $|\Psi(t)\rangle$ which resemble the classical picture in a much better way. A very interesting class of such states are the coherent states (or Glauber states ${ }^{2}$ )

$$
\begin{equation*}
|\alpha\rangle=\sum_{n} \mathrm{e}^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \quad \text { for arbitrary complex } \alpha \tag{7}
\end{equation*}
$$

These states are actually eigenstates of the lowering operator

$$
\begin{equation*}
\hat{a}|\alpha\rangle=\sum_{n} \mathrm{e}^{-|\alpha|^{2} / 2} \frac{\alpha^{n}}{\sqrt{n!}} \sqrt{n}|n-1\rangle=\alpha \sum_{n} \mathrm{e}^{-|\alpha|^{2} / 2} \frac{\alpha^{n-1}}{\sqrt{(n-1)!}}|n-1\rangle=\alpha|\alpha\rangle \tag{8}
\end{equation*}
$$

with eigenvalue $\alpha$. (Note that $\hat{a}$ is not Hermitian. Thus, eigenstates to different eigenvalues $\alpha$ are neither orthogonal, nor do they satisfy the closure relation.) As the coherent states are not eigenstates of the Hamiltonian, they have a more complicated time dependence. For the initial condition $|\Psi(t=0)\rangle=\left|\alpha_{0}\right\rangle$ we find

$$
\begin{align*}
|\Psi(t)\rangle & =\sum_{n} \mathrm{e}^{-\left|\alpha_{0}\right|^{2} / 2} \frac{\alpha_{0}^{n}}{\sqrt{n!}} \mathrm{e}^{-\mathrm{i}\left(n+\frac{1}{2}\right) \omega t}|n\rangle=\mathrm{e}^{-\mathrm{i} \omega t / 2} \sum_{n} \mathrm{e}^{-\left|\alpha_{0} \mathrm{e}^{-\mathrm{i} \omega t}\right|^{2} / 2} \frac{\left(\alpha_{0} \mathrm{e}^{-\mathrm{i} \omega t}\right)^{n}}{\sqrt{n!}}|n\rangle  \tag{9}\\
& =\mathrm{e}^{\mathrm{-} \omega t / 2}|\alpha(t)\rangle \quad \text { with } \alpha(t)=\alpha_{0} \mathrm{e}^{-\mathrm{i} \omega t}
\end{align*}
$$

Thus an initial coherent state is also a coherent state for later times with a change in the phase of $\alpha$ (as well as a multiplicative phase $\mathrm{e}^{-\mathrm{i} \omega t / 2}$, which is not of relevance for any observable).
In order to calculate the expectation values of space and momentum, we use Eq. (4) and $\langle\alpha| \hat{a}^{\dagger}=\alpha^{*}\langle\alpha|$. Then we find

$$
\begin{align*}
& \langle\alpha| \hat{x}|\alpha\rangle=\sqrt{\frac{\hbar}{2 m \omega}}\left(\alpha^{*}+\alpha\right)=\sqrt{\frac{2 \hbar}{m \omega}} \operatorname{Re}\{\alpha\}  \tag{10}\\
& \langle\alpha| \hat{p}|\alpha\rangle=\mathrm{i} \sqrt{\frac{\hbar m \omega}{2}}\left(\alpha^{*}-\alpha\right)=\sqrt{2 \hbar m \omega} \operatorname{Im}\{\alpha\} \tag{11}
\end{align*}
$$

With the time dependence $\alpha(t)=\alpha_{0} \mathrm{e}^{-\mathrm{i} \omega t}$, the averages reproduce the classical trajectories in phase space, as can be seen in Fig. 1 .
In the same spirit (and using $\hat{a} \hat{a}^{\dagger}=\hat{a}^{\dagger} \hat{a}+1$ ) we obtain

$$
\begin{align*}
& \langle\alpha| \hat{x}^{2}|\alpha\rangle=\frac{2 \hbar}{m \omega}(\operatorname{Re}\{\alpha\})^{2}+\frac{\hbar}{2 m \omega}  \tag{12}\\
& \langle\alpha| \hat{p}^{2}|\alpha\rangle=2 \hbar m \omega(\operatorname{Im}\{\alpha\})^{2}+\frac{\hbar m \omega}{2} \tag{13}
\end{align*}
$$

This provides the variance

$$
\begin{align*}
& \Delta x=\sqrt{\langle\alpha| \hat{x}^{2}|\alpha\rangle-\langle\alpha| \hat{x}|\alpha\rangle^{2}}=\sqrt{\frac{\hbar}{2 m \omega}}  \tag{14}\\
& \Delta p=\sqrt{\langle\alpha| \hat{p}^{2}|\alpha\rangle-\langle\alpha| \hat{p}|\alpha\rangle^{2}}=\sqrt{\frac{\hbar m \omega}{2}} \tag{15}
\end{align*}
$$

which describe the scattering of measurement results around the expectation value as indicated in Fig. 1. We find that $\Delta x$ is just the maximal elongation divided by $2|\alpha|$. Thus the relative fluctuations in the measurement results for the position vanish in the limit of larger $|\alpha|$. The

[^1]

Figure 1: Motion of a Glauber state with $\alpha_{0}=3$. The red circle is the classical trajectory, which is identical to the expectation values for space and momentum. The magenta area denotes the range of typical measurement values for $x$ and $p$ at a given time. (Note that only one of them can be measured for each preparation of the system.)
same holds for $\Delta p$, so that we recover the classical behavior with well defined position and momentum for $|\alpha| \rightarrow \infty$. Furthermore we find the product

$$
\begin{equation*}
\Delta x \Delta p=\frac{\hbar}{2} \tag{16}
\end{equation*}
$$

which is the lowest possible value according to the Heisenberg uncertainty relation.


[^0]:    ${ }^{1}$ Andreas.Wacker@fysik.lu.se This work is licensed under the Creative Commons License CC-BY| It can be downloaded from www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/.

[^1]:    ${ }^{2}$ R.J. Glauber, Phys. Rev. 131, 2766-2788 (1963)

