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1 General properties

The Hamilton operator of the harmonic oscillator reads

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (1)

Here we want to calculate the eigenvalues in an algebraic way.

We define the lowering operator

â =
1√

2m~ω
(ip̂+mωx̂) (2)

Note that, in contrast to p̂ and x̂, â is not Hermitian and â† is called raising operator. They
obey the essential commutator relation

[â, â†] = ââ† − â†â = 1 (3)

We find easily

x̂ =

√
~

2mω
(â+ â†) p̂ =

√
m~ω

2
i(â† − â) (4)

Inserting into Eq. (1) we obtain

Ĥ = ~ω
(
â†â+

1

2

)
(5)

Thus, the eigenstates of the harmonic oscillator correspond to the eigenstates of the number
operator N̂ = â†â. Let now |n〉 be an eigenstate of N̂ with eigenvalue n. As N̂ is Hermitian, n
is a real number (later we will find, that n ∈ N). Lets consider the state |β〉 = â|n〉 We find

N̂ |β〉 = â†ââ|n〉 = (ââ† − 1)â|n〉 = ân|n〉 − |β〉 = (n− 1)|β〉

Thus |β〉 is a further eigenstate of N̂ with eigenvalue n− 1. The norm of |β〉 is

〈β|β〉 = 〈n|â†â|n〉 = n

As 〈β|β〉 cannot be negative, we find that the eigenvalues of the number operator satisfy n ≥ 0.
Thus we define the normalized state |n− 1〉 by

|n− 1〉 =
1√
n
|β〉 =

1√
n
â|n〉 for n 6= 0 (6)
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By repeating this operation we can generate a chain of states |n〉, |n− 1〉, |n− 2〉, . . . which are
all eigenstates of the number operator with eigenvalues n, n − 1, n − 2, . . . , respectively. As
the eigenvalues of the number operator cannot be negative, this chain must terminate with a
certain state |n − h〉 where h ∈ N. The condition given in Eq. (6) implies that termination is
only possible if n− h = 0 holds. Thus we conclude, that n = h is a natural number.

Analogously to Eq. (6), we can show that

|n+ 1〉 =
1√
n+ 1

â†|n〉

is a further normalized eigenstate of N̂ with eigenvalue n+ 1. Thus for each n, we can generate
an infinite chain of eigenstates |n〉, |n+1〉, |n+2〉, . . ., so that all natural numbers n are possible
eigenvalues of N̂ .

The eigenstates |n〉 of the number operator N̂ = â†â satisfy:

N̂ |n〉 = n|n〉 with n ∈ N

|n− 1〉 =
1√
n
â|n〉 for n 6= 0

|n+ 1〉 =
1√
n+ 1

â†|n〉

Simultaneously, the states |n〉 are the eigenstates of the harmonic oscillator

Ĥ = ~ω
(
â†â+

1

2

)
with energies ~ω(n+ 1

2
), respectively.

2 Heisenberg picture

In the Heisenberg picture the time dependence of the operators is given by

dÔ(t)

dt
=

i

~
[Ĥ, Ô]

if the operator has no explicit time-dependence. Thus we find for the lowering operator :

dâ(t)

dt
= iω[â†â, â] = −iωâ ⇒ â(t) = â(0)e−iωt

and similarly â†(t) = â†(0)eiωt

3 Coherent States

The energy eigenstates |n〉 provide the expectation values (Hint: use Eq. (4) and the orthonor-
mality for different eigenstates of Ĥ)

〈n|x̂|n〉 = 0 and 〈n|p̂|n〉 = 0
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Thus they do not resemble a classical oscillation, where x and p oscillate in time. However there
are states |Ψ(t)〉 which resemble the classical picture in a much better way. A very interesting
class of such states are the coherent states (or Glauber states2)

|α〉 =
∑
n

e−|α|
2/2 α

n

√
n!
|n〉 for arbitrary complex α (7)

These states are actually eigenstates of the lowering operator

â|α〉 =
∑
n

e−|α|
2/2 α

n

√
n!

√
n|n− 1〉 = α

∑
n

e−|α|
2/2 αn−1√

(n− 1)!
|n− 1〉 = α|α〉 (8)

with eigenvalue α. (Note that â is not Hermitian. Thus, eigenstates to different eigenvalues α
are neither orthogonal, nor do they satisfy the closure relation.) As the coherent states are not
eigenstates of the Hamiltonian, they have a more complicated time dependence. For the initial
condition |Ψ(t = 0)〉 = |α0〉 we find

|Ψ(t)〉 =
∑
n

e−|α0|2/2 α
n
0√
n!

e
−i

(
n+

1
2

)
ωt|n〉 = e−iωt/2

∑
n

e−|α0e−iωt|2/2
(
α0e

−iωt)n
√
n!

|n〉

=e−iωt/2|α(t)〉 with α(t) = α0e
−iωt

(9)

Thus an initial coherent state is also a coherent state for later times with a change in the phase
of α (as well as a multiplicative phase e−iωt/2, which is not of relevance for any observable).

In order to calculate the expectation values of space and momentum, we use Eq. (4) and
〈α|â† = α∗〈α|. Then we find

〈α|x̂|α〉 =

√
~

2mω
(α∗ + α) =

√
2~
mω

Re {α} (10)

〈α|p̂|α〉 = i

√
~mω

2
(α∗ − α) =

√
2~mω Im {α} (11)

With the time dependence α(t) = α0e
−iωt, the averages reproduce the classical trajectories in

phase space, as can be seen in Fig. 1.

In the same spirit (and using ââ† = â†â+ 1) we obtain

〈α|x̂2|α〉 =
2~
mω

(Re {α})2 +
~

2mω
(12)

〈α|p̂2|α〉 = 2~mω(Im {α})2 +
~mω

2
(13)

This provides the variance

∆x =
√
〈α|x̂2|α〉 − 〈α|x̂|α〉2 =

√
~

2mω
(14)

∆p =
√
〈α|p̂2|α〉 − 〈α|p̂|α〉2 =

√
~mω

2
(15)

which describe the scattering of measurement results around the expectation value as indicated
in Fig. 1. We find that ∆x is just the maximal elongation divided by 2|α|. Thus the relative
fluctuations in the measurement results for the position vanish in the limit of larger |α|. The

2R.J. Glauber, Phys. Rev. 131, 2766-2788 (1963)



Harmonic Oscillator, Andreas Wacker, Lund University, September 6, 2017 4

-4 -3 -2 -1 0 1 2 3 4
x [√2h/mω]-

-4

-3

-2

-1

0

1

2

3

4

p
 [

√
2

h
m

ω
]

-

ℜ{α}

ℑ
{α

}ωt

2∆x

2
∆

p

Figure 1: Motion of a Glauber state with α0 = 3. The red circle is the classical trajectory, which
is identical to the expectation values for space and momentum. The magenta area denotes the
range of typical measurement values for x and p at a given time. (Note that only one of them
can be measured for each preparation of the system.)

same holds for ∆p, so that we recover the classical behavior with well defined position and
momentum for |α| → ∞. Furthermore we find the product

∆x∆p =
~
2

(16)

which is the lowest possible value according to the Heisenberg uncertainty relation.
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