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1 Introduction

These notes shall briefly explain general results for the internal energy and the specific heat for
simple classical and quantum systems. The focus is on two model systems namely a

Free particle with energy E =
p2

2m
(1)

and a

Harmonic oscillator with energy E =
p2

2m
+

1

2
mω2x2 . (2)

Applications to solid state physics are briefly discussed. The central input from thermodynamics
is the probability Pi to find a systems in state i with energy Ei. In thermal equilibrium (i.e.
in contact with a heat bath of temperature T ), it is given by the Boltzmann distribution (or
canonical distribution)

Pi =
e−βEi

Z
with β =

1

kBT
and the partition function Z =

∑
i

e−βEi .

In particular, we find that for T = 0, the system is always in its ground state with lowest
energy. For finite temperatures, the system can be excited and the average energy is given by

U(T ) =
∑
i

EiPi =
∑
i

Eie
−βEi

Z
= − 1

Z

∂Z

∂β
. (3)

Here we evaluate U both for the classical and the quantum case and discuss the specific heat
at constant volume Cv = ∂U

∂T
, where no work by compression or expansion is involved.

2 Classical Physics

2.1 Free particles

We start with a free particle in one dimension, which can take arbitrary momentum p. In this
case the sum over i becomes an integral of p and P (p0)δp is the probability to find the system
in the interval δp around p0. Then the partition function reads

Z1 =

∫ ∞
−∞

dp e−βp
2/2m =

√
2mπ

β
using the standard integral

∫ ∞
−∞

dx e−αx
2

=

√
π

α
.
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The expectation value for the energy (3) provides

U1 = −
√

β

2mπ

∂

∂β

√
2mπ

β
=
kBT

2

For three dimensions, we have

Z3 =

∫ ∞
−∞

d3p e−βp
2/2m =

(∫ ∞
−∞

dpx e−βp
2
x/2m

)(∫ ∞
−∞

dpy e−βp
2
y/2m

)(∫ ∞
−∞

dpz e−βp
2
z/2m

)
= Z3

1

and

U3 = −
(

2mπ

β

)−3/2
∂

∂β

(
2mπ

β

)3/2

=
3kBT

2
.

This can be directly extended to N particles and we find

In thermal equilibrium a classical system on N free particles in D dimensions has the internal
energy

U = ND
kBT

2
(4)

which is precisely kBT/2 for each degree of freedom.

Then the specific heat (at constant volume) is given by

Cv =
∂U

∂T
= ND

kB
2

(5)

which holds, e.g., for ideal monoatomic gases.

2.2 Harmonic oscillator

In this case the energy (2) depends both on p and x and we have to integrate over both variables
in order to get the correct distribution. We find

Z =

∫ ∞
−∞

dp

∫ ∞
−∞

dx e−β(p
2/2m+mω2x2/2) =

√
2mπ

β

√
2π

βmω2
=

2π

ωβ

and Eq. (3) provides

U = −ωβ
2π

∂

∂β

2π

ωβ
= kBT

Thus the average energy is just twice as large as for the free particle, as the energy is evenly
distributed between the kinetic and potential energy. (This only holds for quadratic potentials!)

In thermal equilibrium each oscillation mode has the internal energy

U = kBT (6)

The atoms in a crystal have 3Natoms different oscillation modes as given by the vibration(phonon)
spectrum. Thus we expect the specific heat

CV = 3kBNatoms

This is called the Dulong-Petit law, which is valid for solids at sufficiently high temperatures
(as we will see below, room temperature is at the borderline for many substances). For iron,
the atomic mass is m = 55.845 × 1.66 × 10−27kg = 9.27 × 10−26kg we thus estimate a specific
heat per mass of 3kB/m = 447 J/(K kg). This is actually in surprisingly good agreement with
the experimental value of about 440 J/(K kg) at room temperature.
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2.3 Comment on phase space

Tacitly, it was assumed in the preceding subsections, that the probability should be evaluated
for the variables momentum pi and positions xi. If one would use the energy to describe the
states instead, we would find Z =

∫∞
0

dE e−βE = 1/β and 〈E〉 =
∫∞
0

dE Ee−βE/Z = kBT ,
for all systems. Thus one wonders, why the choice of space and momentum is the right one?
The reason lies in classical Hamiltonian mechanics, which is based on a pair of position and
(generalized) momentum coordinate for each degree of freedom to describe the state of the
sytem. These variables (as well as other pairs obtained by canonical transformations) stand out,
as they allow to predict the evolution of the system via the Hamilton equations (a generalization
of Newtons law ma = F). 2

3 Quantum Physics

3.1 Harmonic oscillator

Quantum physics tells us that the one-dimensional harmonic oscillator with angular frequency
ω has discrete energies En = (n+ 1/2)~ω with n = 0, 1, 2, . . .. We find the partition function

Z =
∞∑
n=0

e−βEn = eβ~ω/2
∞∑
n=0

e−βn~ωn =
eβ~ω/2

1− e−β~ω
using

∞∑
n=0

an =
1

1− a
for |a| < 1

and the average energy

U = − 1

Z

∂Z

∂β
= . . . =

~ω
2

+
~ω

eβ~ω − 1
.

This provides the specific heat

Cv =
d

dT
U = kB

β2(~ω)2eβ~ω

(eβ~ω − 1)2

The result is plotted in Fig. 1. In the case β~ω � 1 (i.e. kBT � ~ω) this becomes vanishingly
small, while for β~ω � 1 (i.e. kBT � ~ω) we obtain the classical result kB. One says, that the
degree of freedom freezes in around a temperature where kBT = ~ω.

As the energies of the phonons for solids are typically some tens of meV (while kBT = 25 meV
at room temperature, we expect modifications from the Dulong-Petit law addressed above.
These become even more prominent, when lowering the temperature. The low-energy phonon
spectrum is given by the acoustic phonons with a spectrum ω(q) = c|q|, where c is the sound
velocity (actually these are three branches with different and direction-dependent velocities).
Assuming for simplicity, that all modes with ~ω(q) < kBT provide kB to the specific heat,
while those with higher frequency do not participate at all, we obtain that the specific heat
is just given by 3kB times the number of q values satisfying |q| < kBT/(~c). This number is
proportional to the volume of a sphere, i.e., proportional to T 3. Thus the phonon part for the
specific heat vanishes as T 3 if the temperature approaches the absolute zero, which is known
as the Debye law.

2Actually these canonical variables are the ones which also satisfy the canonical commutation relations
[p̂i, x̂j ] = δij

~
i in quantum mechanics.
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Figure 1: Specific heat of a phonon mode with angular frequency ω.

3.2 Single particle in a box

For a box of length L with infinite potentials outside, the eigenstates of the stationary Schrödinger
equation are

Ψn(x) =

√
2

L
sin
(nπx
L

)
with energy En =

~2π2n2

2mL2
for n = 1, 2, . . .

Thus we get the partition functions Z =
∑

n e−βEn . Now we set α = β~2π2/2mL2. In the limit
of α � 1 (i.e. L is much larger than the thermal wavelength3 ~/

√
2πmkBT ) we may replace

the sum by an integral, as e−αn
2

changes only weakly between consecutive values of n. We
obtain

Z ≈
∫ ∞
0

dx e−αx
2

=

√
π

4α
and 〈En〉 ≈

1

Z

∫ ∞
0

dxαx2e−αx
2

=
kBT

2

This recovers the classical result. On the other hand for α� 1, i.e. for low temperatures, the
probabilities for Pn are vanishingly small for n ≥ 2 and P1 = 1. This we find

〈En〉 ≈ E1 =
~2π2

2mL2

In this case the specific heat becomes zero, in contrast to the result kB/2 for high temperatures.
Together with the preceding subsection this can be summarized as

Quantum physics provides discrete energy levels. If the spacing of these levels is small com-
pared to kBT , the classical result for the specific heat is recovered for a single particle. Other-
wise, if kBT becomes smaller than the spacing between the ground and first excited quantum
level, the contribution to the specific heat vanishes. One says that the degree of freedom
freezes in.

3.3 Many particles in a finite box

Next to the existence of discrete energy levels, the Pauli principle is another important con-
sequence of quantum physics. It states that for systems of identical particles, each must be

3Note a change in the factors π in order to match the conventional definition.
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placed in a different level. Thus the lowest energy for N electrons in a one dimensional box
is obtained by putting them into the levels n = 1, 2, . . . N/2, where the electron spin allows to
put two electron in each orbital level. The energy of the last filled level is denoted as the Fermi
energy and we obtain

EF =
~2π2N2

8mL2
for a one-dimensional box

which is actually a function of the one-dimensional electron density N/L. In the same spirit the
three-dimensional case is treated. For a cube with length L the energy levels are Enx,ny ,nz =
~2π2

2mL2

(
n2
x + n2

y + n2
z

)
. Here one may use all combinations nx, ny, nz ≥ 1 with n2

x+n2
y+n2

z ≤ n2
max.

Geometrically, these are the points within a 1/8 segment of a sphere of radius nmax. As
each point covers a volume ∆nx∆ny∆nz = 1, the volume of this sphere segment matches the
number of points for large nmax, where fluctuations at the surface become less relevant. thus
we find πn3

max/6 different combinations (nx, ny, nz). Taking into account spin, this allows to
accommodate N = πn3

max/3 electrons and we find the Fermi energy

EF =
~2π2n2

max

2mL2
=

~2

2m

(
3π2N

L3

)2/3

for a cube with length L in three dimensions.

For an electron density 2/(3Å)3 we obtain EF = 6 eV, a typical value for a Fermi energy in a
metal.

In order to be thermally excited, the electrons have to occupy levels above this Fermi energy.
As EF is huge compared to the thermal energy of kBT = 25 meV, we find that the vast majority
of electrons is frozen in and does not contribute to the specific heat. Thus Cv is much smaller
than the value N3kB/2 expected for a classical gas in three dimensions. In order to estimate
the magnitude we assume, that only the states with Enx,ny ,nz & EF − 2kBT contribute to the
specific heat by thermal excitations (i.e. being partially excited to levels above EF ). Their
number is

Nexcitable =
L3(2m)3/2

3π2~3
[
E

3/2
F − (EF − 2kBT )3/2

]
≈ L3(2m)3/2

√
EF

2π2~3
2kBT = 3N

kBT

EF

Assuming further that the excitably states contribute with the classical specific heat of free
particles we find

Cv ≈ Nexcitable
3

2
kB =

9

2

k2B
EF

T

The correct calculation provides an additional factor π2/9, see [1]. The main point is that the
specific heat is strongly reduced by the ratio 3kBT/EF (typically 1% at room temperature) and
that it is proportional to the temperature.

The Pauli principle restricts the possible excitations with low energy and thus the heat capacity
of an electron gas with metallic density is strongly reduced compared to the classical result.

This actually solves the puzzle, why the Dulong-Petit value, solely based on the motion of the
ions, is quite good for the specific heat of many materials at room temperature. As there are
more electrons than ions, they should actually dominate the specific heat from a classical point
of view. Due to the Pauli principle they are almost entirely frozen in!
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