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Exercises to Quantum Mechanics FYSN17/FMFN01, Week 1
Homework to be handed in until January 26 in Johannes’ mailbox

Exercise 1 (Homework): Commutator Relations
Aim: Learning to work with commutators
a) Prove the commutator relation: [Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ].

b) Calculate the commutator: [p̂2x, x̂
2].

c) Show by induction that [B̂, Ân] = n[B̂, Â]Ân−1 if
[
[B̂, Â], Â

]
= 0.

Exercise 2 (Homework): Common eigenstates
Aim: Familiarity with an important rule, which actually holds in both ways, and is frequently
applied
Two operators have a set of common eigenstates, which is complete in the ket space. Prove that the operators
commute.

Exercise 3 (Homework): Measurement
Aim: Applying the probability interpretation of quantum mechanics
Let |ψ1〉 and |ψ2〉 be two orthogonal normalized states of a physical system:

i.e. 〈ψ1|ψ1〉 = 〈ψ2|ψ2〉 = 1 and 〈ψ1|ψ2〉 = 0

and let Â be an observable of the system. Consider a nondegenerate eigenvalue of Â denoted by αn to which
the normalized state |φn〉 corresponds. We define

P1(αn) = |〈φn|ψ1〉|2

P2(αn) = |〈φn|ψ2〉|2

a) What is the interpretation of P1(αn) and P2(αn)?

b) A given particle is in the state |ψ〉 = 3|ψ1〉 − 4i|ψ2〉. What is the probability of getting αn when Â is
measured?

Exercise 4: Eigenstates in matrix representation
Aim: Familiarity with basic operator properties and matrix representation
In a three dimensional subspace two operators are represented by the matrices:

Â =

 a 0 0
0 −a 0
0 0 −a

 , B̂ =

 b 0 0
0 0 ib
0 −ib 0


a and b are real numbers.

a) Show that Â and B̂ are Hermitian.

b) Calculate the eigenvalues of Â and B̂.

c) Show that [Â, B̂] = 0.

d) Determine a basis of common eigenstates.

See other side



Exercise 5: Properties of the adjoint operator
Aim: Familiarity with important relations for the adjoint operator
Derive the following properties of the adjoint of an operator:
a) (Â†)† = Â ;

b) (λÂ)† = λ∗Â†, where λ is a complex number;

c) (Â+ B̂)† = Â† + B̂† ;

d) (ÂB̂)† = B̂†Â† .

Exercise 6: Operator properties (facultative)
Aim: A challenge for more mathematical interested students
Consider a Hermitian operator Â that has the property that Â3 = 1. Show that Â = 1. (Hint: Look at the
eigenstates of Â!)

Exercise 7: Closure relation
Aim: Familiarity with an important relation, we will often use
Prove that if an orthonormal discrete set of kets {|ui〉, i = 1, 2, . . .} constitutes a basis, then it follows that∑

i

|ui〉〈ui| = 1

Exercise 8: Time-evolution of stationary states
Aim: Apply the equation of motion to a particle in a well
A particle of mass m is confined within an infinite one-dimensional well, between x = 0 and x = a. The
stationary states |φn〉 of the particle have energies

En =
n2π2~2

2ma2
, n = 1, 2, 3, , ...

and to the wavefunction φn(x) =
√

2
a sin(nπa x). Consider the case in which at time t=0 the particle is in the

state |ψ(0)〉 = 1√
2
(|φn〉+ |φ2〉).

a) Find the time-dependent |ψ(t)〉.
b) Calculate the wave function ψ(x, t).

The following problems belong to chapter 1 but are done in week 2

Exercise 9: Time evolution
Aim: Get into contact with an important explicit solution for the Schrödinger equation
Show that the unitary operator

Û(t1, t0) = exp

(
Ĥ

i~
(t1 − t0)

)
maps |Ψ(t0)〉 onto |Ψ(t1)〉 if |Ψ(t)〉 satisfies the Schrödinger equation with a time-independent Hamilton
operator Ĥ.

Exercise 10: Time-evolution for the hydrogen atom
Aim: Learn to apply the equation of motion for expectation values
Consider an electron moving in the potential V (r) = − e2

4πε0|r| of a resting proton. Provide the Hamilton
operator and determine

d

dt
〈Ψ|p̂x|Ψ〉

Compare the result with the classical case!


