Exercises to Quantum Mechanics FYSN17/FMFN01, Week 1

Homework to be handed in until January 26 in Johannes' mailbox

Exercise 1 (Homework): Commutator Relations

Aim: Learning to work with commutators
a) Prove the commutator relation: $[\hat{A}, \hat{B} \hat{C}]=[\hat{A}, \hat{B}] \hat{C}+\hat{B}[\hat{A}, \hat{C}]$.
b) Calculate the commutator: $\left[\hat{p}_{x}^{2}, \hat{x}^{2}\right]$.
c) Show by induction that $\left[\hat{B}, \hat{A}^{n}\right]=n[\hat{B}, \hat{A}] \hat{A}^{n-1}$ if $[[\hat{B}, \hat{A}], \hat{A}]=0$.

Exercise 2 (Homework): Common eigenstates

Aim: Familiarity with an important rule, which actually holds in both ways, and is frequently applied
Two operators have a set of common eigenstates, which is complete in the ket space. Prove that the operators commute.

Exercise 3 (Homework): Measurement

Aim: Applying the probability interpretation of quantum mechanics

Let $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ be two orthogonal normalized states of a physical system:

$$
\text { i.e. } \quad\left\langle\psi_{1} \mid \psi_{1}\right\rangle=\left\langle\psi_{2} \mid \psi_{2}\right\rangle=1 \quad \text { and } \quad\left\langle\psi_{1} \mid \psi_{2}\right\rangle=0
$$

and let \hat{A} be an observable of the system. Consider a nondegenerate eigenvalue of \hat{A} denoted by α_{n} to which the normalized state $\left|\phi_{n}\right\rangle$ corresponds. We define

$$
\begin{aligned}
& P_{1}\left(\alpha_{n}\right)=\left|\left\langle\phi_{n} \mid \psi_{1}\right\rangle\right|^{2} \\
& P_{2}\left(\alpha_{n}\right)=\left|\left\langle\phi_{n} \mid \psi_{2}\right\rangle\right|^{2}
\end{aligned}
$$

a) What is the interpretation of $P_{1}\left(\alpha_{n}\right)$ and $P_{2}\left(\alpha_{n}\right)$?
b) A given particle is in the state $|\psi\rangle=3\left|\psi_{1}\right\rangle-4 \mathrm{i}\left|\psi_{2}\right\rangle$. What is the probability of getting α_{n} when \hat{A} is measured?

Exercise 4: Eigenstates in matrix representation

Aim: Familiarity with basic operator properties and matrix representation
In a three dimensional subspace two operators are represented by the matrices:

$$
\hat{A}=\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & -a & 0 \\
0 & 0 & -a
\end{array}\right], \hat{B}=\left[\begin{array}{ccc}
b & 0 & 0 \\
0 & 0 & i b \\
0 & -i b & 0
\end{array}\right]
$$

a and b are real numbers.
a) Show that \hat{A} and \hat{B} are Hermitian.
b) Calculate the eigenvalues of \hat{A} and \hat{B}.
c) Show that $[\hat{A}, \hat{B}]=0$.
d) Determine a basis of common eigenstates.

Exercise 5: Properties of the adjoint operator
Aim: Familiarity with important relations for the adjoint operator
Derive the following properties of the adjoint of an operator:
a) $\left(\hat{A}^{\dagger}\right)^{\dagger}=\hat{A}$;
b) $(\lambda \hat{A})^{\dagger}=\lambda^{*} \hat{A}^{\dagger}$, where λ is a complex number;
c) $(\hat{A}+\hat{B})^{\dagger}=\hat{A}^{\dagger}+\hat{B}^{\dagger}$;
d) $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$.

Exercise 6: Operator properties (facultative)

Aim: A challenge for more mathematical interested students
Consider a Hermitian operator \hat{A} that has the property that $\hat{A}^{3}=\mathbf{1}$. Show that $\hat{A}=\mathbf{1}$. (Hint: Look at the eigenstates of $\hat{A}!$)

Exercise 7: Closure relation

Aim: Familiarity with an important relation, we will often use
Prove that if an orthonormal discrete set of kets $\left\{\left|u_{i}\right\rangle, i=1,2, \ldots\right\}$ constitutes a basis, then it follows that

$$
\sum_{i}\left|u_{i}\right\rangle\left\langle u_{i}\right|=1
$$

Exercise 8: Time-evolution of stationary states

Aim: Apply the equation of motion to a particle in a well
A particle of mass m is confined within an infinite one-dimensional well, between $x=0$ and $x=a$. The stationary states $\left|\phi_{n}\right\rangle$ of the particle have energies

$$
E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m a^{2}}, \quad n=1,2,3,, \ldots
$$

and to the wavefunction $\phi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right)$. Consider the case in which at time $\mathrm{t}=0$ the particle is in the state $|\psi(0)\rangle=\frac{1}{\sqrt{2}}\left(\left|\phi_{n}\right\rangle+\left|\phi_{2}\right\rangle\right)$.
a) Find the time-dependent $|\psi(t)\rangle$.
b) Calculate the wave function $\psi(x, t)$.

The following problems belong to chapter 1 but are done in week 2
Exercise 9: Time evolution
Aim: Get into contact with an important explicit solution for the Schrödinger equation
Show that the unitary operator

$$
\hat{U}\left(t_{1}, t_{0}\right)=\exp \left(\frac{\hat{H}}{\mathrm{i} \hbar}\left(t_{1}-t_{0}\right)\right)
$$

maps $\left|\Psi\left(t_{0}\right)\right\rangle$ onto $\left|\Psi\left(t_{1}\right)\right\rangle$ if $|\Psi(t)\rangle$ satisfies the Schrödinger equation with a time-independent Hamilton operator \hat{H}.

Exercise 10: Time-evolution for the hydrogen atom

Aim: Learn to apply the equation of motion for expectation values

Consider an electron moving in the potential $V(\mathbf{r})=-\frac{e^{2}}{4 \pi \epsilon_{0}|\mathbf{r}|}$ of a resting proton. Provide the Hamilton operator and determine

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\Psi| \hat{p}_{x}|\Psi\rangle
$$

Compare the result with the classical case!

