Lunds Universitet Spring 2016
Tineke van den Berg, Johannes Berlin

Exercises to Quantum Mechanics FYSN17/FMFNO1, Week 2

Homework to be handed in until February, 2 in Johannes’ mailbox

The first seven problems deal with the one-dimensional harmonic oscillator with Hamiltonian Hogt =
p?/2m + mw?4? /2 and eigenstates |¢,) with energy (n + 1/2)hw, where n = 0,1,2,.... The operators a and
at are the corresponding step operators.

Exercise 1: Matrix elements
Aim: Training the use of step operators
Calculate the matrix elements (¢, |p?|¢;)

Exercise 2: Kinetic and potential energy
Aim: Training the use of step operators; seeing an example for the virial theorem
Calculate the expectation values of the kinetic and potential energy

52 mwa?
<T>:<2pm> and <V>:< 5 >

if the oscillator is in its n'" eigenstate |¢y,).
Hint: Write p and Z in terms of a! and a.

Exercise 3 (Homework): Uncertainty Relation
Aim: Training the use of step operators; reminding on uncertainty from previous courses
Calculate the uncertainty product Ax- Ap for the eigenstate |¢y,).
Hint: Remember that

Az = /(32) — (2)2, Ap=/(p?) — (p)?

Exercise 4 (Homework): Time-dependence of expectation values
Aim: Applying general formula; getting familiar with classical correspondence
Solving the stationary Schréodinger equation in a finite basis by diagonalization Assume the oscillator is in a
state |U(t)) satisfying the Schrodinger equation.
a) Calculate (¥(t)|aT|¥(t)) and (¥(t)|a|¥(t)) as a function of time for given initial values ag = (¥(0)|af|¥(0))
and by = (U (0)]a|w(0)).
b) Determine (U (¢)|Z|¥(t)) and (V(¢)|[p|¥(t)) from the result of a).

Hint: UseXWAY) — i 0p|[f7, A)| ).

Exercise 5: Oscillator in an electric field
Aim: Training to solve the stationary Schrodinger equation by diagonalization
Consider the Hamiltonian H = ﬁoscﬂ — qF'z, which describes the harmonic oscillator with charge ¢ with an
additional electric field F'. Consider the subspace spanned by |¢g) and |¢1) and calculate the eigenstates and
eigenenergies of H in this subspace.
Hint: Write 2 in terms of a! and a.

See other side



Exercise 6: Coherent state (facultative)
Aim: Getting familiar with states which are central for quantum optics
A so called coherent state is described by a wavefunction of the form:
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a) Show that |¢g) is an eigenstate of the operator & and determine the eigenvalue.
b) Determine C'= C(t) and = (t) so that |¢g) satisfies the time dependent Schrédinger equation.

Hints: a) Write a(af)” as a normal ordered product (all a' terms precede @) b) Plug |¢s) into the time-
dependent Schrédinger equation and compare coeflicients.

The following problems deal with harmonic oscillators of higher dimensions.

Exercise 7: Angular momentum
Aim: Training the application of step operators in three dimensions
Consider a three-dimensional harmonic oscillator.

a) Show that the operator L, = (7 x p), can be expressed as L, = ifi(ala, — d;&z).

b) Calculate the commutator [H, L,].

Exercise 8: Magic numbers of isotropic oscillator
Aim: Learning the concept of shell structure and magic numbers
Assume that we have non-interacting fermions with spin 1/2 in a three-dimensional harmonic oscillator. Such
particles obey the Pauli exclusion principle and you can put at most two particles (one with spin up and one
with spin down) into each single-particle eigenstate (called level). Now you fill N particles into the levels such
that the total energy is minimal, i.e. the levels with the lowest possible energies are occupied. Determine the
magic numbers in such a system.

Explanation: N is called a magic number, if the (N 4+ 1)th fermion would need to occupy a level with an
energy, which is larger than the energy of any level occupied for N fermions. (In this case the configuration
with N particles is particularly stable, such as the noble gases in the periodic table.)

Exercise 10 (Homework): Magic numbers of anisotropic oscillator
Aim: Applying the concept of shell structure and magic numbers
In the lecture notes we only considered isotropic oscillators. An anisotropic two-dimensional oscillator is
given by the Hamiltonian ) )
H= (px;?;py) + %(w%fcz +wii?)
where w, # wy. Consider the special case w, = 2w,. Calculate the eight lowest energy levels and determine

the magic numbers for the case of fermions.



