Exercises to Quantum Mechanics FYSN17/FMFN01, Week 2
 Homework to be handed in until February, 2 in Johannes' mailbox

The first seven problems deal with the one-dimensional harmonic oscillator with Hamiltonian $\hat{H}_{\text {oscil }}=$ $\hat{p}^{2} / 2 m+m \omega^{2} \hat{x}^{2} / 2$ and eigenstates $\left|\phi_{n}\right\rangle$ with energy $(n+1 / 2) \hbar \omega$, where $n=0,1,2, \ldots$. The operators \hat{a} and \hat{a}^{\dagger} are the corresponding step operators.

Exercise 1: Matrix elements

Aim: Training the use of step operators
Calculate the matrix elements $\left\langle\phi_{n}\right| \hat{p}^{2}\left|\phi_{l}\right\rangle$

Exercise 2: Kinetic and potential energy

Aim: Training the use of step operators; seeing an example for the virial theorem Calculate the expectation values of the kinetic and potential energy

$$
\langle\hat{T}\rangle=\left\langle\frac{\hat{p}^{2}}{2 m}\right\rangle \quad \text { and } \quad\langle\hat{V}\rangle=\left\langle\frac{m \omega^{2} \hat{x}^{2}}{2}\right\rangle
$$

if the oscillator is in its $n^{\text {th }}$ eigenstate $\left|\phi_{n}\right\rangle$.
Hint: Write \hat{p} and \hat{x} in terms of \hat{a}^{\dagger} and \hat{a}.

Exercise 3 (Homework): Uncertainty Relation

Aim: Training the use of step operators; reminding on uncertainty from previous courses Calculate the uncertainty product $\Delta x \cdot \Delta p$ for the eigenstate $\left|\phi_{n}\right\rangle$.
Hint: Remember that

$$
\Delta x=\sqrt{\left\langle\hat{x}^{2}\right\rangle-\langle\hat{x}\rangle^{2}}, \quad \Delta p=\sqrt{\left\langle\hat{p}^{2}\right\rangle-\langle\hat{p}\rangle^{2}}
$$

Exercise 4 (Homework): Time-dependence of expectation values
Aim: Applying general formula; getting familiar with classical correspondence
Solving the stationary Schrödinger equation in a finite basis by diagonalization Assume the oscillator is in a state $|\Psi(t)\rangle$ satisfying the Schrödinger equation.
a) Calculate $\langle\Psi(t)| \hat{a}^{\dagger}|\Psi(t)\rangle$ and $\langle\Psi(t)| \hat{a}|\Psi(t)\rangle$ as a function of time for given initial values $a_{0}=\langle\Psi(0)| \hat{a}^{\dagger}|\Psi(0)\rangle$ and $b_{0}=\langle\Psi(0)| \hat{a}|\Psi(0)\rangle$.
b) Determine $\langle\Psi(t)| \hat{x}|\Psi(t)\rangle$ and $\langle\Psi(t)| \hat{p}|\Psi(t)\rangle$ from the result of a).

Hint: Use $\frac{d\langle\Psi| \hat{A}|\Psi\rangle}{d t}=\frac{i}{\hbar}\langle\Psi|[\hat{H}, \hat{A}]|\Psi\rangle$.

Exercise 5: Oscillator in an electric field

Aim: Training to solve the stationary Schrödinger equation by diagonalization

Consider the Hamiltonian $\hat{H}=\hat{H}_{\text {oscil }}-q F \hat{x}$, which describes the harmonic oscillator with charge q with an additional electric field F. Consider the subspace spanned by $\left|\phi_{0}\right\rangle$ and $\left|\phi_{1}\right\rangle$ and calculate the eigenstates and eigenenergies of \hat{H} in this subspace.
Hint: Write \hat{x} in terms of \hat{a}^{\dagger} and \hat{a}.

Exercise 6: Coherent state (facultative)

Aim: Getting familiar with states which are central for quantum optics
A so called coherent state is described by a wavefunction of the form:

$$
\left|\phi_{\beta}\right\rangle=C \sum_{n=0}^{\infty} \frac{\beta^{n}}{n!}\left(\hat{a}^{\dagger}\right)^{n}\left|\phi_{0}\right\rangle
$$

a) Show that $\left|\phi_{\beta}\right\rangle$ is an eigenstate of the operator \hat{a} and determine the eigenvalue.
b) Determine $C=C(t)$ and $\beta=\beta(t)$ so that $\left|\phi_{\beta}\right\rangle$ satisfies the time dependent Schrödinger equation.

Hints: a) Write $\hat{a}\left(\hat{a}^{\dagger}\right)^{n}$ as a normal ordered product (all \hat{a}^{\dagger} terms precede \hat{a}) b) Plug $\left|\phi_{\beta}\right\rangle$ into the timedependent Schrödinger equation and compare coefficients.

The following problems deal with harmonic oscillators of higher dimensions.

Exercise 7: Angular momentum

Aim: Training the application of step operators in three dimensions
Consider a three-dimensional harmonic oscillator.
a) Show that the operator $\hat{L}_{x}=(\hat{r} \times \hat{p})_{x}$ can be expressed as $\hat{L}_{x}=i \hbar\left(\hat{a}_{z}^{\dagger} \hat{a}_{y}-\hat{a}_{y}^{\dagger} \hat{a}_{z}\right)$.
b) Calculate the commutator $\left[\hat{H}, \hat{L}_{x}\right]$.

Exercise 8: Magic numbers of isotropic oscillator

Aim: Learning the concept of shell structure and magic numbers

Assume that we have non-interacting fermions with spin $1 / 2$ in a three-dimensional harmonic oscillator. Such particles obey the Pauli exclusion principle and you can put at most two particles (one with spin up and one with spin down) into each single-particle eigenstate (called level). Now you fill N particles into the levels such that the total energy is minimal, i.e. the levels with the lowest possible energies are occupied. Determine the magic numbers in such a system.
Explanation: N is called a magic number, if the $(N+1)$ th fermion would need to occupy a level with an energy, which is larger than the energy of any level occupied for N fermions. (In this case the configuration with N particles is particularly stable, such as the noble gases in the periodic table.)

Exercise 10 (Homework): Magic numbers of anisotropic oscillator

 Aim: Applying the concept of shell structure and magic numbersIn the lecture notes we only considered isotropic oscillators. An anisotropic two-dimensional oscillator is given by the Hamiltonian

$$
\hat{H}=\frac{\left(\hat{p}_{x}^{2}+\hat{p}_{y}^{2}\right)}{2 m}+\frac{m}{2}\left(\omega_{x}^{2} \hat{x}^{2}+\omega_{y}^{2} \hat{y}^{2}\right)
$$

where $\omega_{x} \neq \omega_{y}$. Consider the special case $\omega_{y}=2 \omega_{x}$. Calculate the eight lowest energy levels and determine the magic numbers for the case of fermions.

