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Exercises to Quantum Mechanics FYSN17/FMFN01, Week 2
Homework to be handed in until February, 2 in Johannes’ mailbox

The first seven problems deal with the one-dimensional harmonic oscillator with Hamiltonian Ĥoscil =
p̂2/2m+mω2x̂2/2 and eigenstates |φn〉 with energy (n+ 1/2)~ω, where n = 0, 1, 2, . . .. The operators â and
â† are the corresponding step operators.

Exercise 1: Matrix elements
Aim: Training the use of step operators
Calculate the matrix elements 〈φn|p̂2|φl〉

Exercise 2: Kinetic and potential energy
Aim: Training the use of step operators; seeing an example for the virial theorem
Calculate the expectation values of the kinetic and potential energy

〈T̂ 〉 =
〈
p̂2

2m

〉
and 〈V̂ 〉 =

〈
mω2x̂2

2

〉

if the oscillator is in its nth eigenstate |φn〉.
Hint: Write p̂ and x̂ in terms of â† and â.

Exercise 3 (Homework): Uncertainty Relation
Aim: Training the use of step operators; reminding on uncertainty from previous courses
Calculate the uncertainty product ∆x·∆p for the eigenstate |φn〉.
Hint: Remember that

∆x =
√
〈x̂2〉 − 〈x̂〉2, ∆p =

√
〈p̂2〉 − 〈p̂〉2

Exercise 4 (Homework): Time-dependence of expectation values
Aim: Applying general formula; getting familiar with classical correspondence
Solving the stationary Schrödinger equation in a finite basis by diagonalization Assume the oscillator is in a
state |Ψ(t)〉 satisfying the Schrödinger equation.
a) Calculate 〈Ψ(t)|â†|Ψ(t)〉 and 〈Ψ(t)|â|Ψ(t)〉 as a function of time for given initial values a0 = 〈Ψ(0)|â†|Ψ(0)〉
and b0 = 〈Ψ(0)|â|Ψ(0)〉.
b) Determine 〈Ψ(t)|x̂|Ψ(t)〉 and 〈Ψ(t)|p̂|Ψ(t)〉 from the result of a).

Hint: Used〈Ψ|Â|Ψ〉
dt = i

~〈Ψ|[Ĥ, Â]|Ψ〉.

Exercise 5: Oscillator in an electric field
Aim: Training to solve the stationary Schrödinger equation by diagonalization
Consider the Hamiltonian Ĥ = Ĥoscil − qF x̂, which describes the harmonic oscillator with charge q with an
additional electric field F . Consider the subspace spanned by |φ0〉 and |φ1〉 and calculate the eigenstates and
eigenenergies of Ĥ in this subspace.
Hint: Write x̂ in terms of â† and â.

See other side



Exercise 6: Coherent state (facultative)
Aim: Getting familiar with states which are central for quantum optics
A so called coherent state is described by a wavefunction of the form:

|φβ〉 = C
∞∑
n=0

βn

n! (â†)n|φ0〉

a) Show that |φβ〉 is an eigenstate of the operator â and determine the eigenvalue.
b) Determine C = C(t) and β = β(t) so that |φβ〉 satisfies the time dependent Schrödinger equation.
Hints: a) Write â(â†)n as a normal ordered product (all â† terms precede â) b) Plug |φβ〉 into the time-
dependent Schrödinger equation and compare coefficients.

The following problems deal with harmonic oscillators of higher dimensions.

Exercise 7: Angular momentum
Aim: Training the application of step operators in three dimensions
Consider a three-dimensional harmonic oscillator.
a) Show that the operator L̂x = (r̂ × p̂)x can be expressed as L̂x = i~(â†

zây − â†
yâz).

b) Calculate the commutator [Ĥ, L̂x].

Exercise 8: Magic numbers of isotropic oscillator
Aim: Learning the concept of shell structure and magic numbers
Assume that we have non-interacting fermions with spin 1/2 in a three-dimensional harmonic oscillator. Such
particles obey the Pauli exclusion principle and you can put at most two particles (one with spin up and one
with spin down) into each single-particle eigenstate (called level). Now you fill N particles into the levels such
that the total energy is minimal, i.e. the levels with the lowest possible energies are occupied. Determine the
magic numbers in such a system.
Explanation: N is called a magic number, if the (N + 1)th fermion would need to occupy a level with an
energy, which is larger than the energy of any level occupied for N fermions. (In this case the configuration
with N particles is particularly stable, such as the noble gases in the periodic table.)

Exercise 10 (Homework): Magic numbers of anisotropic oscillator
Aim: Applying the concept of shell structure and magic numbers
In the lecture notes we only considered isotropic oscillators. An anisotropic two-dimensional oscillator is
given by the Hamiltonian

Ĥ =
(p̂2
x + p̂2

y)
2m + m

2 (ω2
xx̂

2 + ω2
y ŷ

2)

where ωx 6= ωy. Consider the special case ωy = 2ωx. Calculate the eight lowest energy levels and determine
the magic numbers for the case of fermions.


