Exercises to Quantum Mechanics FYSN17/FMFN01, Week 3 Homework to be handed in until February, 9 in Johannes' mailbox

Exercise 1: Rotational symmetry

Aim: Getting familiar with commutation relations for \hat{L}

A potential $V(\mathbf{r})$ is rotational symmetric with respect to two perpendicular axes. Show that it must be spherical symmetric.

Hint: Show that $[V(\hat{\mathbf{r}}), \hat{L}_x] = 0$ and $[V(\hat{\mathbf{r}}), \hat{L}_y] = 0 \Rightarrow [V(\hat{\mathbf{r}}), \hat{L}_z] = 0$.

Exercise 2: Properties of operators with rotational symmetry

Aim: Understanding central relations for operators with rotational symmetry

 \hat{A} is an operator that commutes with all components of \hat{J} . According to Chapter 3.1. of the lecture this reflects its rotational symmetry. Show that:

a) $\langle j'm'|\hat{A}|jm\rangle = 0$ when $m \neq m'$ or $j \neq j'$.

b) $\langle jm | \hat{A} | jm \rangle$ is independent of *m*. Hint: use the step operators!

Exercise 3 (Homework): Operators

Aim: Training the use of commutation relations

Suppose that there are three operators $(\hat{T}_x, \hat{T}_y, \hat{T}_z)$ that satisfy the following commutation relations with the angular momentum operators $(\hat{J}_x, \hat{J}_y, \hat{J}_z)$

$$[\hat{J}_x, \hat{T}_x] = 0$$
, $[\hat{J}_x, \hat{T}_y] = i\hbar \hat{T}_z$ and $[\hat{J}_x, \hat{T}_z] = -i\hbar \hat{T}_y$

and cyclic permutations. Furthermore we define $\hat{T}_+ = \hat{T}_x + i \hat{T}_y$

a) Prove the following commutation relations

$$[\hat{J}_z, \hat{T}_+] = \hbar \hat{T}_+$$
 and $[\hat{\mathbf{J}}^2, \hat{T}_+] = 2\hbar^2 \hat{T}_+ + 2\hbar (\hat{T}_+ \hat{J}_z - \hat{T}_z \hat{J}_+)$

b) Show that $\hat{T}_+|j,j\rangle = c|j+1,j+1\rangle$ where $|j,m\rangle$ are the common eigenstates of the angular momentum operators \hat{J}_z , $\hat{\mathbf{J}}^2$ and c is a constant.

Exercise 4: Matrix representation for J = 3/2

Aim: Understanding the fundamental structure of multiplets

Determine the matrices for \hat{J}_x, \hat{J}_y and \hat{J}_z in $\mathcal{M}^{\frac{3}{2}}$. Check that the matrices satisfy the commutation relation: $[\hat{J}_x, \hat{J}_y] = i\hbar \hat{J}_z$.

Exercise 5: Angular momentum measurement for a wave function

Aim: Applying the measurement concept in quantum mechanics; working with spherical harmonics

The wave function for a particle is given by

$$\Psi(\mathbf{r}) = f(r)(\sin\theta\cos\varphi + \cos\theta + 1)$$

in spherical coordinates, where f(r) is an arbitrary function satisfying the normalization $\int d^3r |\Psi(\mathbf{r})|^2 = 1$. One measures \hat{L}^2 and \hat{L}_z simultaneously. What are the possible outcomes of the measurement and what are the probabilities of each outcome?

Exercise 6 (Homework): Energy of an ion with spin

Aim: Working with matrix representations; calculation of energy eigenstates An ion in a crystal lattice has an effective spin = \hbar . Suppose that the only degree of freedom is the spin. The spin interacts with the surrounding lattice so that: $\hat{H}_{spin} = A\hat{S}_z^2$.

a) Write \hat{H}_{spin} as a matrix.

b) Determine the energy eigenvalues.

c) An external magnetic field $\mathbf{B} = B\mathbf{e}_z$ is switched on. Calculate the new energies if the ion has a magnetic moment $\hat{\mu} = \gamma \hat{\mathbf{S}}$, where $\hat{\mathbf{S}} = \hat{S}_x \mathbf{e}_x + \hat{S}_y \mathbf{e}_y + \hat{S}_z \mathbf{e}_z$

d) The crystal is turned so that $\mathbf{B} = B\mathbf{e}_x$. What are the new energies?

Exercise 7: Products of Pauli matrices

Aim: Getting familiar with Pauli matrices

Show by direct computation the following formulae:

$$egin{aligned} \sigma_x^2 &= \sigma_y^2 = \sigma_z^2 = \mathbf{1} & \sigma_x \sigma_y = i \sigma_z \ \sigma_y \sigma_z + \sigma_z \sigma_y = 0 & \sigma_x \sigma_y \sigma_z = i \mathbf{1} \end{aligned}$$

Exercise 8: Finite rotation of a spin 1/2 system

Aim: Working with operator and representations; Concept of unitarity; Important feature of spin

Let \hat{S}_x be the spin operator for a spin $\frac{1}{2}$ -particle and \hat{U} the operator

$$\hat{U} = \exp\left(-\frac{i}{\hbar}\theta\hat{S}_x\right).$$

a) Show that the representation of \hat{U} in $\mathcal{M}^{\frac{1}{2}}$ is given by:

$$\hat{U} = \cos\left(\frac{\theta}{2}\right)\mathbf{1} - i\sin\left(\frac{\theta}{2}\right)\sigma_x.$$

b) Prove that \hat{U} is unitary.

c) The operator \hat{U} is providing a rotation around the x axis by the angle θ . Discuss the action of this rotation for angles of $\theta = 2\pi$ and $\theta = 4\pi$.