Exercises to Quantum Mechanics FYSN17/FMFN01, Week 3

Homework to be handed in until February, 9 in Johannes' mailbox

Exercise 1: Rotational symmetry

Aim: Getting familiar with commutation relations for \hat{L}
A potential $V(\mathbf{r})$ is rotational symmetric with respect to two perpendicular axes. Show that it must be spherical symmetric.
Hint: Show that $\left[V(\hat{\mathbf{r}}), \hat{L}_{x}\right]=0$ and $\left[V(\hat{\mathbf{r}}), \hat{L}_{y}\right]=0 \Rightarrow\left[V(\hat{\mathbf{r}}), \hat{L}_{z}\right]=0$.

Exercise 2: Properties of operators with rotational symmetry

Aim: Understanding central relations for operators with rotational symmetry
\hat{A} is an operator that commutes with all components of $\hat{\mathbf{J}}$. According to Chapter 3.1. of the lecture this reflects its rotational symmetry. Show that:
a) $\left\langle j^{\prime} m^{\prime}\right| \hat{A}|j m\rangle=0$ when $m \neq m^{\prime}$ or $j \neq j^{\prime}$.
b) $\langle j m| \hat{A}|j m\rangle$ is independent of m. Hint: use the step operators!

Exercise 3 (Homework): Operators

Aim: Training the use of commutation relations

Suppose that there are three operators $\left(\hat{T}_{x}, \hat{T}_{y}, \hat{T}_{z}\right)$ that satisfy the following commutation relations with the angular momentum operators $\left(\hat{J}_{x}, \hat{J}_{y}, \hat{J}_{z}\right)$

$$
\left[\hat{J}_{x}, \hat{T}_{x}\right]=0, \quad\left[\hat{J}_{x}, \hat{T}_{y}\right]=i \hbar \hat{T}_{z} \quad \text { and } \quad\left[\hat{J}_{x}, \hat{T}_{z}\right]=-i \hbar \hat{T}_{y}
$$

and cyclic permutations. Furthermore we define $\hat{T}_{+}=\hat{T}_{x}+i \hat{T}_{y}$
a) Prove the following commutation relations

$$
\left[\hat{J}_{z}, \hat{T}_{+}\right]=\hbar \hat{T}_{+} \quad \text { and } \quad\left[\hat{\mathbf{J}}^{2}, \hat{T}_{+}\right]=2 \hbar^{2} \hat{T}_{+}+2 \hbar\left(\hat{T}_{+} \hat{J}_{z}-\hat{T}_{z} \hat{J}_{+}\right)
$$

b) Show that $\hat{T}_{+}|j, j\rangle=c|j+1, j+1\rangle$ where $|j, m\rangle$ are the common eigenstates of the angular momentum operators $\hat{J}_{z}, \hat{\mathbf{J}}^{2}$ and c is a constant.

Exercise 4: Matrix representation for $J=3 / 2$
Aim: Understanding the fundamental structure of multiplets
Determine the matrices for \hat{J}_{x}, \hat{J}_{y} and \hat{J}_{z} in $\mathcal{M}^{\frac{3}{2}}$. Check that the matrices satisfy the commutation relation: $\left[\hat{J}_{x}, \hat{J}_{y}\right]=i \hbar \hat{J}_{z}$.

Exercise 5: Angular momentum measurement for a wave function

Aim: Applying the measurement concept in quantum mechanics; working with spherical harmonics
The wave function for a particle is given by

$$
\Psi(\mathbf{r})=f(r)(\sin \theta \cos \varphi+\cos \theta+1)
$$

in spherical coordinates, where $f(r)$ is an arbitrary function satisfying the normalization $\int \mathrm{d}^{3} r|\Psi(\mathbf{r})|^{2}=1$. One measures \hat{L}^{2} and \hat{L}_{z} simultaneously. What are the possible outcomes of the measurement and what are the probabilities of each outcome?

Exercise 6 (Homework): Energy of an ion with spin
Aim: Working with matrix representations; calculation of energy eigenstates
An ion in a crystal lattice has an effective spin $=\hbar$. Suppose that the only degree of freedom is the spin. The spin interacts with the surrounding lattice so that: $\hat{H}_{\text {spin }}=A \hat{S}_{z}^{2}$.
a) Write $\hat{H}_{\text {spin }}$ as a matrix.
b) Determine the energy eigenvalues.
c) An external magnetic field $\mathbf{B}=B \mathbf{e}_{z}$ is switched on. Calculate the new energies if the ion has a magnetic moment $\hat{\mu}=\gamma \hat{\mathbf{S}}$, where $\hat{\mathbf{S}}=\hat{S}_{x} \mathbf{e}_{x}+\hat{S}_{y} \mathbf{e}_{y}+\hat{S}_{z} \mathbf{e}_{z}$
d) The crystal is turned so that $\mathbf{B}=B \mathbf{e}_{x}$. What are the new energies?

Exercise 7: Products of Pauli matrices

Aim: Getting familiar with Pauli matrices

Show by direct computation the following formulae:

$$
\begin{aligned}
\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2} & =\mathbf{1} & \sigma_{x} \sigma_{y} & =i \sigma_{z} \\
\sigma_{y} \sigma_{z}+\sigma_{z} \sigma_{y} & =0 & \sigma_{x} \sigma_{y} \sigma_{z} & =i \mathbf{1}
\end{aligned}
$$

Exercise 8: Finite rotation of a spin 1/2 system

Aim: Working with operator and representations; Concept of unitarity; Important feature of spin
Let \hat{S}_{x} be the spin operator for a spin $\frac{1}{2}$-particle and \hat{U} the operator

$$
\hat{U}=\exp \left(-\frac{i}{\hbar} \theta \hat{S}_{x}\right)
$$

a) Show that the representation of \hat{U} in $\mathcal{M}^{\frac{1}{2}}$ is given by:

$$
\hat{U}=\cos \left(\frac{\theta}{2}\right) \mathbf{1}-i \sin \left(\frac{\theta}{2}\right) \sigma_{x}
$$

b) Prove that \hat{U} is unitary.
c) The operator \hat{U} is providing a rotation around the x axis by the angle θ. Discuss the action of this rotation for angles of $\theta=2 \pi$ and $\theta=4 \pi$.

