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Exercise 1: Level crossing
Aim: Applying stationary perturbation theory; understanding a generic scenario
There is a rule in quantum mechanics that says: ’Perturbations remove level-crossings’. A level-crossing is
when the Hamiltonian depends on a parameter and the eigenvalues of it cross if plotted as functions of this
parameter. We shall investigate this in a very simple model. Consider a two dimensional state space where
the unperturbed Hamiltonian Ĥ0 and the perturbation Ĥp are given by:

Ĥ0(λ) =
[
kλ 0
0 −kλ

]
, Ĥp =

[
0 c
c∗ 0

]
(1)

Here k is a positive real constant, c a constant, and λ a parameter (−1 < λ < 1).
a) Plot the eigenvalues of Ĥ0 as a function of λ.
b) Calculate the eigenvalues of Ĥ0 + Ĥp and plot those in the same diagram.
c) Treat the system in perturbation theory and show that the second order-approximation becomes bad,
when λ approaches 0.

Exercise 3: Optical transition
Aim: Learning how to apply the time-dependent perturbation theory
Consider a one-dimensional harmonic oscillator with frequency ω0 and mass m. For t → −∞ the oscillator
is in its ground state. Calculate the transition probability to the first excited state for the perturbation
V̂ (t) = Fx̂e−t2/τ2 .
Hint: replace the integration limits in Eq. (5.20) of the compendium by ±∞.

Exercise 4 (Homework): Rabi Oscillation in a quantum dot
Aim: Training time-dependent perturbation theory; comparing with exact result
A quantum dot shall have two energy levels |1〉 with E0

1 = 0 and |2〉 with E0
2 = ∆E > 0. A laser field provides

a periodic perturbation V̂ (t) = 2F̂ cos(ωt), which is in resonance with the level spacing, i.e., ∆E = ~ω. We
assume the matrix elements

〈i|F̂ |j〉 =
( 0 F
F 0

)
with F ∈ R. Let the system be at t = 0 in the state |1〉, which means that there is an electron in the ground
level.
a) Determine the transition probability P1→2(t) as a function of time in lowest order in F using Eq. (5.20)
of the compendium.
b) Let |ΨD(t)〉 = a(t)|1〉 + b(t)|2〉 hold in the interaction picture. Provide the equations of motion for the
amplitudes a(t) and b(t)!
c) Solve the equation of motion with the approximation that the rapidly oscillating terms e±2iωt are negligible
(which is called Rotating Wave Approximation). Compare |b(t)|2 with P1→2(t) from part (a).

See other side



Exercise 4: 3-dimensional harmonic oscillator in magnetic field
Aim: Training degenerate perturbation theory
A charged particle with mass m and charge q is confined by a three dimensional harmonic oscillator potential
Ĥ0 with frequency ω. A magnetic field is added which gives rise to a perturbation

Ĥp = − q

2mBL̂z.

a) Express L̂z in step operators.
b) Determine the splitting of the first excited state in first order in B.

Exercise 5: Rutherford scattering
Aim: Applying Fermi’s golden rule; Getting familiar with a classical experiment
Consider the scattering of α particles at a nucleus with charge Ze (Rutherford Scattering). Here the initial
and final states are solutions of the free particle Hamiltonian Ĥ0 = p̂2/2mα, in the form of plane waves |k〉.
The initial state shall have the wave-vector ki = k0ez and the final state the wave-vector kf . Scattering
is caused by the (screened) Coulomb potential φ(r) = Ze exp(−λr)/(4πε0r) of the nucleus. Determine the
dependence of the transition rate on the angle θ = ∠(ez,k) by Fermi’s golden rule in the limit λ→ 0.
Hint: For the spatial integration, you should choose spherical coordinates with respect to the axis k0 − k.
Remark: The result obtained here in lowest order perturbation theory equals both the exact quantum
mechanical and the classical result (this is a particular feature of the 1/r potential). Comparing experimental
data with the classical result, Rutherford thus could deduce in 1911, that the atoms contain a point-like
nucleus with positive charge.


