Exercises to Quantum Mechanics FYSN17/FMFN01, Week 6
 Homework to be handed in on March 1

Exercise 1: Level crossing

Aim: Applying stationary perturbation theory; understanding a generic scenario

There is a rule in quantum mechanics that says: 'Perturbations remove level-crossings'. A level-crossing is when the Hamiltonian depends on a parameter and the eigenvalues of it cross if plotted as functions of this parameter. We shall investigate this in a very simple model. Consider a two dimensional state space where the unperturbed Hamiltonian \hat{H}_{0} and the perturbation \hat{H}_{p} are given by:

$$
\hat{H}_{0}(\lambda)=\left[\begin{array}{cc}
k \lambda & 0 \tag{1}\\
0 & -k \lambda
\end{array}\right], \hat{H}_{p}=\left[\begin{array}{cc}
0 & c \\
c^{*} & 0
\end{array}\right]
$$

Here k is a positive real constant, c a constant, and λ a parameter $(-1<\lambda<1)$.
a) Plot the eigenvalues of \hat{H}_{0} as a function of λ.
b) Calculate the eigenvalues of $\hat{H}_{0}+\hat{H}_{p}$ and plot those in the same diagram.
c) Treat the system in perturbation theory and show that the second order-approximation becomes bad, when λ approaches 0 .

Exercise 3: Optical transition

Aim: Learning how to apply the time-dependent perturbation theory

Consider a one-dimensional harmonic oscillator with frequency ω_{0} and mass m. For $t \rightarrow-\infty$ the oscillator is in its ground state. Calculate the transition probability to the first excited state for the perturbation $\hat{V}(t)=F \hat{x} \mathrm{e}^{-t^{2} / \tau^{2}}$.
Hint: replace the integration limits in Eq. (5.20) of the compendium by $\pm \infty$.

Exercise 4 (Homework): Rabi Oscillation in a quantum dot

Aim: Training time-dependent perturbation theory; comparing with exact result

A quantum dot shall have two energy levels $|1\rangle$ with $E_{1}^{0}=0$ and $|2\rangle$ with $E_{2}^{0}=\Delta E>0$. A laser field provides a periodic perturbation $\hat{V}(t)=2 \hat{F} \cos (\omega t)$, which is in resonance with the level spacing, i.e., $\Delta E=\hbar \omega$. We assume the matrix elements

$$
\langle i| \hat{F}|j\rangle=\left(\begin{array}{cc}
0 & F \\
F & 0
\end{array}\right)
$$

with $F \in \mathbb{R}$. Let the system be at $t=0$ in the state $|1\rangle$, which means that there is an electron in the ground level.
a) Determine the transition probability $P_{1 \rightarrow 2}(t)$ as a function of time in lowest order in F using Eq. (5.20) of the compendium.
b) Let $\left|\Psi^{D}(t)\right\rangle=a(t)|1\rangle+b(t)|2\rangle$ hold in the interaction picture. Provide the equations of motion for the amplitudes $a(t)$ and $b(t)$!
c) Solve the equation of motion with the approximation that the rapidly oscillating terms $e^{ \pm 2 i \omega t}$ are negligible (which is called Rotating Wave Approximation). Compare $|b(t)|^{2}$ with $P_{1 \rightarrow 2}(t)$ from part (a).

Exercise 4: 3-dimensional harmonic oscillator in magnetic field

Aim: Training degenerate perturbation theory

A charged particle with mass m and charge q is confined by a three dimensional harmonic oscillator potential \hat{H}_{0} with frequency ω. A magnetic field is added which gives rise to a perturbation

$$
\hat{H}_{p}=-\frac{q}{2 m} B \hat{L}_{z} .
$$

a) Express \hat{L}_{z} in step operators.
b) Determine the splitting of the first excited state in first order in B.

Exercise 5: Rutherford scattering

Aim: Applying Fermi's golden rule; Getting familiar with a classical experiment
Consider the scattering of α particles at a nucleus with charge Ze (Rutherford Scattering). Here the initial and final states are solutions of the free particle Hamiltonian $\hat{H}_{0}=\hat{p}^{2} / 2 m_{\alpha}$, in the form of plane waves $|\mathbf{k}\rangle$. The initial state shall have the wave-vector $\mathbf{k}_{i}=k_{0} \mathbf{e}_{z}$ and the final state the wave-vector \mathbf{k}_{f}. Scattering is caused by the (screened) Coulomb potential $\phi(r)=Z e \exp (-\lambda r) /\left(4 \pi \epsilon_{0} r\right)$ of the nucleus. Determine the dependence of the transition rate on the angle $\theta=\angle\left(\mathbf{e}_{z}, \mathbf{k}\right)$ by Fermi's golden rule in the limit $\lambda \rightarrow 0$.
Hint: For the spatial integration, you should choose spherical coordinates with respect to the axis $\mathbf{k}_{0}-\mathbf{k}$.
Remark: The result obtained here in lowest order perturbation theory equals both the exact quantum mechanical and the classical result (this is a particular feature of the $1 / r$ potential). Comparing experimental data with the classical result, Rutherford thus could deduce in 1911, that the atoms contain a point-like nucleus with positive charge.

