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Chapter 1

FORMULATION OF

QUANTUM MECHANICS

In order to quantify a physical system, a mathematical apparatus has to be iden-

tified. In classical mechanics we became used to identify objects with points ri

in the three-dimensional Euclidean space. These points change in time according

to a differential equation mr̈ = F (Newton’s law, 1687). This guarantees, that

for a known initial position and velocity, any possible observable can be precisely

determined for all future times. The long success story of this deterministic con-

cept in describing macroscopic processes, such as for example the falling of apples,

trajectories of canon balls, or the movement of planets, has essentially formed our

conceptual understanding of nature. However, plenty of physical effects, such as

the presence of discrete lines in the hydrogen spectrum, as described by Rydbergs

law 1888 at Lund University1 (generalizing earlier work by Balmer) or the Stern-

Gerlach experiment2 (1922), see Fig. 1.1, indicate, that measurements of physical

quantities often provide results, which cannot be explained in terms of classical

mechanics.

With the observation by Max Planck in 1900, that the spectrum of black-body

radiation can only be understood, if one assumes, that the energy of the radiation

is quantized in portions ~ω, physicists left the world of classical mechanics. In the

1See http://www.fysik.lu.se/english/history/janne-rydberg-and-his-formula/
2See B. Friedrich and D. Herschbach, Physics Today 56(12), 53 (2003) for its historical context

1

http://www.fysik.lu.se/english/history/janne-rydberg-and-his-formula/
http://dx.doi.org/10.1063/1.1650229
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Figure 1.1: Sketch of the Stern-Gerlach experiment (figure by Theresa Knott from

Wikipedia). Silver atoms with a magnetic moment µB are transversing an inho-

mogeneous magnetic field which exerts a force depending on the orientation of the

magnetic dipole with respect to the field. This provides a splitting of the trajec-

tories of the atoms depending on the z-component of their magnetic moment (the

z-direction is chosen as the direction from S to N in the apparatus, which is oppo-

site to the direction of the magnetic field in the center). While one would expect

a continuous distribution of deflections for a random orientation of the magnetic

moment, only two different deflections are observed.

following 30 years the concepts of quantum mechanics were developed, as we use

them today.

Central to its formulation is to use a new mathematical apparatus, where one

introduces the complex vector space of kets for the description of physical systems.

Motivation is for example given in section 1.1 of Modern Quantum Mechanics by

J.J. Sakurai, drawing on the analogy between the Stern-Gerlach experiment and

the polarization of electromagnetic waves.

1.1 The ket space and the state of a quantum

system

In order to formulate a physical theory, an appropriate mathematical formalism

has to be identified. In the case of Quantum Mechanics this is the algebra of a
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complex vector space with inner product, which we refer to as ket-space here. In

the following, the main properties of this mathematical concept are presented with

a focus on applications towards quantum mechanics.

1.1.1 Axioms of the ket-space

A vector space contains a class of objects |φ〉 (called vectors or, in our case also

kets) and a field of numbers α (here the complex numbers) satisfying the following

axioms:

• The addition of two arbitrary states |φ1〉+ |φ2〉 = |φ3〉 is a further state and

|φ1〉+ |φ2〉 = |φ2〉+ |φ1〉 holds (commutative addition).

• The addition of three arbitrary states does not depend on the sequence, i.e.

(|φ1〉+ |φ2〉) + |φ3〉 = |φ1〉+ (|φ2〉+ |φ3〉) (associativity).

• There exists a null state |null〉 satisfying |φ〉+ |null〉 = |φ〉 for all states |φ〉
(it can be shown that there is only one such state).

• For every state |φ〉 there exists an inverse state |φ̄〉, so that |φ〉+ |φ̄〉 = |null〉.
Conventionally, one writes the addition of an inverse state as subtraction of

the state, i.e. |φ1〉 − |φ2〉 = |φ1〉+ |φ̄2〉.

• A state multiplied by any complex number α ∈ C, α|φ1〉 = |φ2〉 is another

state. In particular 1|φ〉 = |φ〉 holds.

• (α + β)|φ〉 = α|φ〉 + β|φ〉 and α(|φ1〉 + |φ2〉) = α|φ1〉 + α|φ2〉 for arbitrary

states |φi〉 and complex numbers α, β ∈ C (distributivity).

• (αβ)|φ〉 = α(β|φ〉) for arbitrary states |φ〉 and complex numbers α, β.

These axioms of a vector space (as taught in linear algebra) provide the well-known

calculation rules used for geometrical vectors in the three-dimensional Euclidean

space. However, a major difference (besides the dimensionality) is, that we here

deal with a vector space with the field of complex numbers, while the Euclidean

space is based on the field of real numbers. This difference is indeed essential for
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the very nature of Quantum Mechanics! On the practical side, it implies a few

complications when defining the inner product 〈φ1|φ2〉 between two states, which

now has a complex number as a result. The inner product satisfies the following

axioms (see any textbook on linear algebra)

• 〈φ|φ〉 is real and positive, unless for |φ〉 = |null〉, when the result is zero.

One usually calls
√
〈φ|φ〉 as the norm of |φ〉.

• 〈φ1|φ2〉 = 〈φ2|φ1〉∗

• For |φ3〉 = α|φ1〉+ β|φ2〉 the following rules hold:

〈φ|φ3〉 = α〈φ|φ1〉+ β〈φ|φ2〉, which is intuitive, and

〈φ3|φ〉 = α∗〈φ1|φ〉+ β∗〈φ2|φ〉, which is often forgotten and leads to common

errors!

1.1.2 The dual space and bras

For a given ket |φ〉, we can define the mapping

|Ψ〉 → fφ(|Ψ〉) = 〈φ|Ψ〉

which maps each ket onto a complex number. Moreover this mapping fφ(|Ψ〉) is

linear as

fφ(α1|Ψ1〉+α2|Ψ2〉) = α1fφ(|Ψ1〉)+α2fφ(|Ψ2〉) for all kets |Ψ1〉, |Ψ2〉 and αβ ∈ C .

In the other direction one can show that each linear mapping from the ket-space

into the complex numbers can be written as 〈φ|Ψ〉 with an appropriately chosen

ket |φ〉. Thus there is a one-to-one correspondence of ket states |φ〉 and the linear

mappings, which themselves form a vector space, called the dual space. (In order

to show this, one has check at all the axioms for the vector space on page 3 are

satisfied for the mappings.) Physicists call these mappings as bras and denote

them by the symbol 〈φ|, which has now become an identity on its own outside

the inner product. However their main usage is in a inner product when 〈φ|Ψ〉
is a number. (Phonetically this product is a bra(c)ket which is the reason for

the choice of names.) As mentioned above there is a one-to-one correspondence

between states |φ〉 and mappings 〈φ|, which is called dual correspondence.
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Note that from the properties of the inner product we have

|φ〉 = α1|φ1〉+ α2|φ2〉 → 〈φ| = α∗1〈φ1|+ α∗2〈φ2| (1.1)

Thus some care is needed in determining the dual correspondence of more compli-

cated expressions. (This will be even worse, when operator relations are considered

later.)

1.1.3 Bases

A central feature of any vector space is the existence of a basis {|ai〉}, which is a

set of kets. This allows to construct any arbitrary ket |φ〉 in a unique way as

|φ〉 =
∑
i

ci|ai〉 with ci ∈ C . (1.2)

For a vector space where the inner product is defined, it is possible to construct

an orthonormal basis (ON-basis), satisfying 〈aj|ai〉 = δij. Note, that there plenty

of different ON bases! In the following we will only consider ON bases. Then we

can easily determine the expansion coefficients ci in Eq. (1.2) by multiplication

with the bra 〈aj| from the left, resulting in cj = 〈aj|φ〉. Inserting this result into

Eq. (1.2) provides |φ〉 =
∑

i |ai〉〈ai|φ〉. As this holds for any state |φ〉, we identify

the

completeness relation
∑
i

|ai〉〈ai| = 1 for any ON basis {|ai〉} (1.3)

(sometimes also called closure relation) which is a very important tool used in

many algebraic transformations.

As a first example we consider

〈φ|φ〉 = 〈φ|

(∑
i

|ai〉〈ai|

)
φ〉 =

∑
i

(〈φ|ai〉) (〈ai|φ〉) =
∑
i

c∗i ci =
∑
i

|ci|2 . (1.4)

Thus the norm 〈φ|φ〉 is given by the sum of absolute squares for the expansion

coefficients with respect to an ON basis. In particular we find:

〈φ|φ〉 = 1 ⇔
∑
i

|ci|2 = 1 .
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1.1.4 Physical states and measurement

The main concept of quantum mechanics is the following assumption

1. Any physical state is identified by a ket |Ψ〉 with norm 1, i.e., 〈Ψ|Ψ〉 = 1.

2. An ideal measurement provides real measurement values αn associated with

physical states |an〉, which form a ON basis of the ket-space.

3. For an arbitrary state |Ψ〉, the probability to observe the result αn in a mea-

surement is given by Pn = |〈an|Ψ〉|2.

As {|an〉} is an ON basis we can write

|Ψ〉 =
∑
n

cn|an〉 with cn = 〈an|Ψ〉 (1.5)

and the normalization of |Ψ〉 satisfies the requirement that sum of probabilities

for all possible outcomes
∑

n Pn =
∑

n |cn|2 = 1 is indeed one, where Eq. (1.4) is

used.

What happens after the measurement? Once the measurement is performed, and

the system was identified to be in the state |an〉, the state vector instantaneously

”collapses” to the state |Ψ〉 = |an〉, corresponding to the newly gained knowledge.

This appearance of probability is quite different from classical physics, where the

outcome of any measurement is uniquely defined3. In contrast, fortuitousness is a

fundamental property of quantum mechanics.

Example: Stern-Gerlach experiment with magnetic field in z direction, see Fig. 1.1.

This experiment measures the z-component of the magnetic moment

µz. The measurement provides two possible outcomes µz = −µB = α1

and µz = µB = α2, which correspond to observing the atom in the

upper and lower dot on the screen, respectively. These measurements

3Of course some uncertainty exists in practice but in classical physics one assumes that this

always can be reduced by better preparation and measurement techniques.
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are associated with the states |a1〉 = | ↑z〉 and |a2〉 = | ↓z〉. If the

incoming atom is in the state

|Ψ〉 =
i

2
| ↑z〉+

√
3

2
| ↓z〉 (1.6)

one detects the atom in the upper dot on the screen (i.e. one measures

the value µz = −µB of the magnetic moment) with a probability of 25%

and with 75% in the lower dot of the screen (i.e. measuring µz = µB).

No other values of µz can be measured in an ideal apparatus.

Comment on degeneracy: For simplicity, it was assumed that each measurement

value αn corresponds to a single state |an〉. The opposite case is called degeneracy,

when several different states |ani〉 show the same measurement values αn. These

states can be discriminated by a different measurement, with results βi, so that

one needs two (or even more) measurements for a complete characterization. In

this case the sums given above have to run over two indices n, i.

Comment on interpretation: The rules given here are sometimes referred to as

the Copenhagen interpretation of quantum mechanics. Up to now they are in

excellent agreement with experiments.4 On the other hand it is fair to say, that

these rules appear rather awkward and consequently there is a vivid discussion

about ’deeper’ interpretations and possible alternate formulations. However none

of these attempts has been proven helpful for a better explanation of physical

results yet.

1.2 Operators and Observables

An operator Â transforms kets into other kets. Here we consider only linear oper-

ators, which are defined by the property

Â(α|φ1〉+ β|φ2〉) = αÂ|φ1〉+ βÂ|φ2〉 for all kets |φ1〉, |φ2〉 and numbers αβ ∈ C .

Operators can be simply added, providing new operators.

4A highlight was the confirmation of the predicted violation of the Bell inequalities by A.

Aspect and his team in 1981/82
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The multiplication of operators Ĉ = ÂB̂ is defined as the operator transform-

ing each ket |φ〉 into the ket Â(B̂|φ〉). In contrast to the addition of operators,

the multiplication is not commutative. The difference between the two different

sequences is a new operator called

commutator : [Â, B̂] = ÂB̂ − B̂Â (1.7)

In contrast, the associative law (ÂB̂)Ĉ = Â(B̂Ĉ) holds for the multiplication of

operators.

1.2.1 Matrix representation

As already discussed in section 1.1.3, one can identify any ket |φ〉 with a set of

numbers c1, c2, . . ., once a basis {|an〉} is defined. In the following we restrict to

ON bases and then we find cn = 〈an|φ〉.

Similar, we rewrite an arbitrary operator Â as

Â =

(∑
i

|ai〉〈ai|

)
Â

(∑
j

|aj〉〈aj|

)
=
∑
ij

|ai〉 〈ai|Â|aj〉︸ ︷︷ ︸
=Aij

〈aj| (1.8)

which maps the operator to a complex matrix Aij in the same way as Eq. (1.2)

maps a ket to column of indices ci. Thus, for a given ON-basis {|ai〉} we can

represent the bras, kets, and operators in the following form:

|φ〉 →

c1

c2

...

 Â→

A11 A12 · · ·
A21 A22 · · ·

...
...

. . .

 〈φ| →
(
c∗1 c∗2 · · ·

)
This is called matrix representation. Then, for a state |φ′〉 =

∑
i c
′
i|ai〉, we find

|φ′〉 = Â|φ〉 ⇐⇒

c
′
1

c′2
...

 =

A11 A12 · · ·
A21 A22 · · ·

...
...

. . .


c1

c2

...


and, for |ϕ〉 =

∑
i di|ai〉,

〈ϕ|φ〉 =
(
d∗1 d∗2 · · ·

)c1

c2

...
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Thus, everything can be calculated using simple matrix multiplications. Remem-

ber, however, that

(i) the matrices depend on the basis chosen

(ii) the simple relations Aij = 〈ai|Â|aj〉 only hold for ON bases.

1.2.2 The adjoint operator

Now we want to study how the operators act on bra states. We start with the

expression 〈φ2|Â|φ1〉 which can be read as the prescription “calculate first the linear

transformation |φ′1〉 = Â|φ1〉 and then the inner product 〈φ2|φ′1〉.” Alternatively

we may consider the object 〈φ2|Â as a mapping f of the ket space into the complex

numbers. This mapping is obviously linear and according to Sec. 1.1.2 it thus can

be associated with some bra 〈φ̃2| with the suggestive notation 〈φ̃2| = 〈φ2|Â.

Now we consider the ket |φ̃2〉 associated with 〈φ̃2| and look for its relation to the

original ket |φ2〉. The mapping |φ2〉 → |φ̃2〉 is linear, and therefore it can be

associated with a new operator B̂, so that |φ̃2〉 = B̂|φ2〉. As the new operator

B̂ is uniquely defined for any operator Â, one writes B̂ = Â† and it is called the

Hermitian conjugate or the adjoint of Â. In short:

〈φ̃| = 〈φ|Â is the dual correspondence of |φ̃〉 = Â†|φ〉 . (1.9)

This concept is very difficult to grasp in the beginning – let us therefore try to

describe it again in different and perhaps more simple terms:

According to their definition, operators always act to the right, on the kets. If we

now want to think about, how an operator Â acts on the bra’s, we realize that it

does it in the same way as its adjoint operator Â† acts on the kets, which is just

Eq. (1.9).

If this yet appears un-understandable, try the following: If you want to simplify

an expression like 〈φ|Â, you can replace it by the bra 〈φ̃| where the corresponding

ket satisfies |φ̃〉 = Â†|φ〉.

With 〈φ̃2| = 〈φ2|Â, we prove the important relation

〈φ2|Â|φ1〉∗ = 〈φ̃2|φ1〉∗ = 〈φ1|φ̃2〉 = 〈φ1|Â†|φ2〉 (1.10)
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Thus we obtain the matrix representation of the adjoint operator A†ij = A∗ji, which

is just the transposed and complex conjugated matrix of the original operator.

For the operators of the special form Â = |φ1〉〈φ2| we may determine the adjoint

directly by considering its definition (1.9). We find

〈φ̃| = 〈φ|Â = 〈φ|φ1〉〈φ2|

and thus the corresponding ket reads by Eq. (1.1)

|φ̃〉 = (〈φ|φ1〉)∗|φ2〉 = |φ2〉〈φ1|︸ ︷︷ ︸
=Â†

φ〉

where we used the definitions of the inner product. Thus we have the relation

(|φ1〉〈φ2|)† = |φ2〉〈φ1| (1.11)

Furthermore the relations

(Â†)† =Â (1.12)

(λÂ)† =λ∗Â† ,where λ is a complex number (1.13)

(Â+ B̂)† =Â† + B̂† (1.14)

(ÂB̂)† =B̂†Â† (1.15)

hold, which can be easily shown, see the exercises.

1.2.3 Hermitian operators

An operator Â is called Hermitian or self-adjoint5 if Â† = Â.

For Hermitian operators Â the matrix representation satisfies Aij = A∗ji for all ON

bases, see Eq. (1.10). Now we know from linear algebra, that such matrices can

be diagonalized by a change of basis. Thus:

For Hermitian operators Â, there exists a special ON basis {|ai〉} for which Aij =

λiδij is diagonal. Thus

Â =
∑
i

λi|ai〉〈ai| (1.16)

These states |ai〉 are the eigenstates and the λi are the corresponding eigenvalues

of the operator Â.
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In practice this basis can be constructed by calculating the eigenvalues and eigen-

columns of the matrix Aij in an arbitrary basis.

Regarding the eigenstates of different Hermitian operators Â, B̂, there is an im-

portant theorem about commuting operators proven in textbooks (e.g. section 5.4

of Bransden and Joachain):

[Â, B̂] = 0 ⇐⇒
There exists an ON-basis of kets {|an〉},
where each ket is eigenstate of

both operators Â and B̂

(1.17)

Note that [Â, B̂] = 0 does not imply, that any eigenstate of Â is also an eigenstate

of B̂. In general, this only holds for certain sets of eigenstates.

1.2.4 Unitary operators

An operator Û is called unitary if Û †Û = 1.

This means, that Û † is the inverse operator for Û , often written as Û−1 = Û †. An

equivalent definition reads

The application of unitary operators does not change the norm of arbitrary kets.

Û is unitary⇔ |φ′〉 = Û |φ〉 implies 〈φ′|φ′〉 = 〈φ|φ〉 for all kets |φ〉

The right direction is easily shown by

〈φ′|φ′〉 = 〈φ|Û †Û |φ〉 = 〈φ|φ〉

The left direction is slightly more complicated, as one has to show that all matrix

elements satisfy 〈a|Û †Û |b〉 = 〈a|b〉, in order to indentify Û †Û = 1. For this purpose

we consider the state |φ1〉 = |a〉+ |b〉. Then 〈φ′1|φ′1〉 = 〈φ1|φ1〉 implies

〈a′|a′〉+ 〈a′|b′〉+ 〈b′|a′〉+ 〈b′|b′〉 = 〈a|a〉+ 〈a|b〉+ 〈b|a〉+ 〈b|b〉

As 〈a′|a′〉 = 〈a|a〉 and 〈b′|b′〉 = 〈b|b〉, we find

〈a|Û †Û |b〉+ 〈b|Û †Û |a〉 = 〈a|b〉+ 〈b|a〉
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Considering |φ2〉 = |a〉+ i|b〉 provides in the same way

〈a|Û †Û |b〉 − 〈b|Û †Û |a〉 = 〈a|b〉 − 〈b|a〉

Adding both equations results in

〈a|Û †Û |b〉 = 〈a|b〉 for all kets |a〉, |b〉

and Û †Û is the unit operator.

1.2.5 Physical observables

A physical property of a system, that can be observed or measured directly, is called

an observable. According to the main postulates of quantum mechanics (Sec. 1.1.4)

the possible measurement values αn for an observable are related to specific states

|an〉, which form an ON basis of the ket-space. Now we want to associate Hermitian

operators with observables. With the definitions of Sec. 1.1.4, and particularly

Eq. (1.5), we find the we find the expectation value of the measurement values for

an arbitrary quantum state |Ψ〉

〈α〉 =
∑
n

Pnαn =
∑
n

|cn|2αn =
∑
n

〈Ψ|an〉αn〈an|Ψ〉 = 〈Ψ|Â|Ψ〉 (1.18)

with the Hermitian operator

Â =
∑
n

|an〉αn〈an| (1.19)

This suggests to relate observables to the appropriate Hermitian operator. On

the other hand, any Hermitian operator can be written in the form (1.19), which

allows us to directly identify observables with Hermitian operators. Later we

will see many examples such a the position operator, angular momentum, or the

Hamilton operator providing the energy of the state. Here we note:

• The real eigenvalues of the Hermitian operator are the possible outcomes of

the measurement.

• The eigenstates are states in which the respective outcome of the measure-

ment is obtained with 100% probability.
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Example: Operators and expectation values of the Stern Gerlach experiment

According to Eq. (1.19) the operator for the z component of the mag-

netic moment is

µ̂z = −µB| ↑z〉〈↑z |+ µB| ↓z〉〈↓z |

with eigenvalues ±µB, where µB is the Bohr magneton, the atomic

unit of the magnetic moment. The expectation value 〈Ψ|µ̂z|Ψ〉, see

Eq. (1.18) is easiest calculated in matrix representation, where we find

〈Ψ|µ̂z|Ψ〉 =
(
c∗↑z c∗↓z

)(−µB 0

0 µB

)(
c↑z

c↓z

)
Inserting the state

|Ψ〉 =
i

2
| ↑z〉+

√
3

2
| ↓z〉 →

(
c↑z

c↓z

)
=

(
i/2√
3/2

)
provides µB/2 in agreement with adding the probabilities.

Example: Calculation of the eigenstates for the operator µ̂x

As we will later see, the operator of the magnetic moment in x direction

is

µ̂x = −µB (| ↑z〉〈↓z |+ | ↓z〉〈↑z |)

In matrix notation, with respect to the basis {| ↑z〉, | ↓z〉}, this is

µ̂x →

(
0 −µB
−µB 0

)
(1.20)

We determine the eigenvalues λ of this matrix by the equation

det

(
−λ −µB
−µB −λ

)
= 0⇒ λ2 = µ2

B

and find the eigenvalues ±µB which are the possible outcomes of a

measurement (in this case corresponding to two dots on the screen
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after the atoms have passed an inhomogeneous magnetic field in x

direction). The corresponding eigen-columns of the matrix are given

by (
−λ −µB
−µB −λ

)(
c1

c2

)
= 0

which provide the (normalized) eigenstates as

λ = −µB

(
1/
√

2

1/
√

2

)
→| ↑x〉 =

1√
2

(| ↑z〉+ | ↓z〉)

λ = µB

(
−1/
√

2

1/
√

2

)
→| ↓x〉 =

1√
2

(−| ↑z〉+ | ↓z〉)

Thus measuring the x-component of the magnetic moment by an appro-

priate Stern-Gerlach apparatus projects the system onto one of these

two states.

1.2.6 Relevance of complex phase for quantum states

Let us consider the three states

|Ψ〉 =
i

2
| ↑z〉+

√
3

2
| ↓z〉

|Ψ1〉 =
1

2
| ↑z〉+

√
3

2
| ↓z〉

|Ψ2〉 =
1

2
| ↑z〉 − i

√
3

2
| ↓z〉 = −i|Ψ〉

which all have identical absolute squares |ci|2 of the expansion coefficients in the

basis {| ↑z〉, | ↓z〉}. Thus all states have identical probabilities to find the system

in | ↑z〉 and | ↓z〉. In the same spirit, the average outcome of a measurement of

the z component of the magnetic moment is the same. Thus one might conclude

that these states represent the same physical system. However for a measure-

ment of the magnetic moment in x direction, a straightforward calculation us-

ing the matrix representation (1.20) provides 〈Ψ|m̂x|Ψ〉 = 〈Ψ2|m̂x|Ψ2〉 = 0 while
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〈Ψ1|m̂x|Ψ1〉 =
√

3
2
µB. Thus the states |Ψ〉 and |Ψ1〉, where the relative phase be-

tween the coefficients c1 and c2 is different, can be distinguished by an appropriate

measurement and do not represent the same physical system.

On the other hand, the relative phase between the coefficients c1 and c2 is identical

for the states |Ψ〉 and |Ψ2〉, as |Ψ2〉 = eiφ|Ψ〉, with φ = −π/2. Now we show

generally that the two states |Ψ2〉 = eiφ|Ψ〉 and |Ψ〉 have identical expectation

values for all possible operators Â. Indeed

〈Ψ2|Â|Ψ2〉 = 〈Ψ|e−iφÂeiφ|Ψ〉 = e−iφeiφ〈Ψ|Â|Ψ〉 = 〈Ψ|Â|Ψ〉

Thus, two states |Ψ〉 and |Ψ2〉, satisfying |Ψ2〉 = eiφ|Ψ〉, have identical properties

for all possible measurements and cannot be distinguished.

1.2.7 Continuous spectrum and position operator

Many observables, such as a position x in space, are continuous variables. De-

scribing a physical observable there is an operator x̂ with eigenvalues x and corre-

sponding eigenstates |x〉. Thus

x̂|x〉 = x|x〉 (1.21)

In contrast to the states |an〉 considered before (which could be numbered with

natural numbers n = 1, 2, 3 . . .), continuous variables cannot be described by sums.

While a thorough description is mathematically complicated, we state here only

that the inner product between the basis state reads

〈x|x′〉 = δ(x− x′) (1.22)

where δ(x − x′) is Dirac’s delta function and the completeness relation (1.3) be-

comes ∫
dx|x〉〈x| = 1 . (1.23)

For an arbitrary quantum state we may write

|Ψ〉 =

∫
dx|x〉〈x|Ψ〉



16 CHAPTER 1. FORMULATION OF QUANTUM MECHANICS

and |〈x|Ψ〉|2∆x is the probability to observe the quantum system in the interval

(x, x + ∆x). With other words, |〈x|Ψ〉|2 is the probability density. Thus, we can

identify the well-known wavefunction as

Ψ(x) = 〈x|Ψ〉 (1.24)

which is just the representation of the kets in the basis of position eigenstates, also

called spatial representation.

Let us assume that the position operators of different spatial directions commute

with each other, i.e.,

[x̂, ŷ] = [x̂, ẑ] = [ẑ, ŷ] = 0 . (1.25)

We then can, according to (1.17), find a set of basis states, labeled |x, y, z〉, which

are eigenstates of all three spatial operators, with respective eigenvalues x, y, z.

These are usually combined to the spatial vector r. In this way, we obtain Ψ(r) =

〈x, y, z|Ψ〉 in the three-dimensional space. Then the inner product between two

states reads

〈Ψ1|Ψ2〉 =

∫
d3r〈Ψ1|r〉〈r|Ψ2〉 =

∫
d3rΨ∗1(r)Ψ2(r)

where we inserted the completeness relation (1.23)

1.2.8 Function of an operator

Frequently we use functions f(Â) of an operator Â. The simplest example is

f(x) = x2 and then we define f(Â) = Â2 as the operator given by the product

ÂÂ. For powers of operators the important relation

[B̂, Ân] = n[B̂, Â]Ân−1 if
[
[B̂, Â], Â

]
= 0 (1.26)

holds, as shown in the exercises. More complicated functions f(x) can generally

be defined via the Taylor expansion as

f(Â) =
∞∑
n=0

fn
n!
Ân for the function f(x) =

∞∑
n=0

fn
n!
xn (1.27)
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Example: Show that

[B̂, f(Â)] = [B̂, Â]f ′(Â) if
[
[B̂, Â], Â

]
= 0 (1.28)

According to the definition for functions of operators we have

[B̂, f(Â)] =
∞∑
n=0

fn
n!

[B̂, Ân] =
∞∑
n=0

fn
n!
n[B̂, Â]Ân−1

=[B̂, Â]
∞∑
n=1

fn
(n− 1)!

Ân−1 = [B̂, Â]f ′(Â)

where Eq. (1.26) was used and we identified f ′(x) =
∑∞

n=1
fn

(n−1)!
xn−1,

which follows directly from the derivative of Taylor expansions. A

particular important application is [p̂, f(x̂)] = ~
i
f ′(x̂) which will be

used later.

There is an alternative definition for the function of Hermitian operators Â. As

discussed in Sec. 1.2.3 an ON basis of eigenstates |an〉 with eigenvalues λn exists

for such operators. Then we can define the function as

f(Â) =
∑
n

|an〉f(λn)〈an| . (1.29)

which can be shown to agree with the definition (1.29)

Example: Show that

Û = eiÂ is unitary for a Hermitian operator Â (1.30)

For Hermitian operators Â, the second definition provides

eiÂ =
∑
n

|an〉eiλn〈an|

where the kets |an〉 are the eigenstates of Â with eigenvalues λn. Eqs. (1.11,1.13,1.14)

provide directly

Û † =
∑
n

|an〉e−iλn〈an| = e−iÂ
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Now we consider

Û Û † =

(∑
n

|an〉eiλn〈an|

)(∑
m

|am〉e−iλm〈am|

)
=
∑
nm

|an〉eiλn 〈an|am〉︸ ︷︷ ︸
=δnm

e−iλm〈am| =
∑
n

|an〉〈an| = 1

Thus Û is unitary.

1.2.9 Operator at change of basis∗

Let {|ai〉} and {|bi〉} be two different ON basis sets. Then, the linear operator

Û =
∑
i

|bi〉〈ai| (1.31)

satisfies Û |ai〉 =
∑

j |bj〉〈aj|ai〉 = |bi〉 for all basis states and thus provides the

basis transformation. From Eq. (1.11) we find

Û † =
∑
i

|ai〉〈bi| ,

and thus

Û Û † =
∑
ij

|bi〉 〈ai|aj〉︸ ︷︷ ︸
δij

〈bi| =
∑
j

|bj〉〈bj| = 1

which shows that Û is unitary.

1.2.10 Subspace∗

The ket space (or Hilbert space) is typically of infinite dimension and thus the

the matrices (Aij) are infinite-dimensional. Often, however, and in particular for

computational purposes, we need to deal with finite matrices. The easiest way to

achieve this, is to approximate the Hilbert space with a finite-dimensional subspace

M, spanned by a finite orthonormal set of kets {|ui〉}Ni=1. Then this subspace

contains all kets, which can be written as

|ν〉finite =
N∑
i=1

ai|ui〉 .
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We can define a so-called projector P̂ (or projection operator) as

P̂ =
N∑
i=1

|ui〉〈ui| (1.32)

such that for all states |ν〉 of the Hilbert space

|ν〉finite = P̂ |ν〉 .

is in M. This operator gives the ”orthogonal projection” of the space H on M.

A subspace M is said to be invariant with respect to an operator Â, if

|u〉 ∈ M ⇒ Â|u〉 ∈ M

Then, there are no matrix elements between elements (i.e., vectors) inside and

outside of M:

|ν〉 /∈M ⇒ 〈ν|Â|u〉 = 0

The matrix representing Â then consists of blocks along the diagonal:

A =




A11 A12 . . .

A21 A22 . . .

. . . .

. . . .

 ∅

∅

AN+1,N+1 . .

. . .

. . .




(1.33)

This notice has much practical importance for calculations: Often, you may use

symmetries to transform the matrix into such a block-diagonal form. Each block

can then be treated separately, which in many cases can reduce the dimensionality

of the problem very drastically.

1.3 Dynamics of Quantum States

The time-dependence of the quantum state is given by the Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ|Ψ(t)〉 , (1.34)
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with the Hamilton operator Ĥ that accounts for the physical properties of the

system.

For particles with mass m moving in the potential V (x, y, z), for example, the

Hamilton operator is

Ĥ =
p̂2
x + p̂2

y + p̂2
z

2m
+ V (r̂x, r̂y, r̂z) (1.35)

where we slightly changed the notation using r̂x = x̂, r̂y = ŷ, r̂z = ẑ. Here the

momentum operators p̂j and spatial operators r̂j satisfy the commutation relations

[p̂j, p̂k] = 0 , [r̂j, r̂k] = 0 , and [p̂j, x̂k] =
~
i
δjk . (1.36)

To simplify the notation one conventionally defines

p̂ = p̂xex + p̂yey + p̂zez and r̂ = x̂ex + ŷey + ẑez

and the resulting expressions look pretty much as in classical mechanics. Note

however, that r̂ is an operator in our ket-space and not a classical position. In this

context V (r̂) is the function of an operator in the spirit of Section 1.2.8.

Formally, the structure of the Hamilton operator can be motivated from the the-

ory of analytical mechanics, where many of the concepts originate from. The

precise meaning of momentum in more complicated situations must be clarified

separately. This will become of relavance for the magnetic field as discussed in

Sec. 4.1. Furthermore, the symmetry properties of space are related to the com-

mutation relations for space and momentum, see, e.g. section 1.6 and chapter 2 of

of the textbook Modern Quantum Mechanics by J.J Sakurai.

1.3.1 Eigenstates of the Hamiltonian

The eigenstates |ϕn〉 of the (time-independent) Hamilton-operator are determined

by the stationary Schrödinger equation

Ĥ|ϕn〉 = En|ϕn〉 . (1.37)

The eigenvalues En are the energies which can be measured. Expanding an arbi-

trary state |Ψ(t)〉 in these eigenstates |Ψ(t)〉 =
∑

n cn(t)|ϕn〉, Eq. (1.34) provides

i~
∑
n

ċn(t)|ϕn〉 =
∑
n

cn(t)En|ϕn〉 .
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Multiplying by 〈ϕn| gives

i~ċn(t) = cn(t)En ⇒ cn(t) = cn(0)e−iEnt/~ (1.38)

which constitutes a complete solution of the time dependence for the quantum

state |Ψ(t)〉 for a given initial condition at t = 0.

1.3.2 Temporal evolution of expectation values

If the system is in a quantum state |Ψ〉 we can evaluate expectation values of

arbitrary operators Â in the form 〈Ψ|Â|Ψ〉. These are changing in time as

d

dt
〈Ψ|Â|Ψ〉 =

(
∂

∂t
〈Ψ|
)
Â|Ψ〉+ 〈Ψ|

(
∂

∂t
Â

)
|Ψ〉+ 〈Ψ|Â

(
∂

∂t
|Ψ〉
)

Using the Schrödinger equation ∂
∂t
|Ψ〉 = 1

i~Ĥ|Ψ〉 and its dual correspondence
∂
∂t
〈Ψ| = − 1

i~〈Ψ|Ĥ
†, as well as the Hermiticity of Ĥ we find

d

dt
〈Ψ|Â|Ψ〉 =

1

i~

(
−〈Ψ|ĤÂ|Ψ〉+ 〈Ψ|ÂĤ|Ψ〉

)
+ 〈Ψ|

(
∂

∂t
Â

)
|Ψ〉

This provides the important relation

d

dt
〈Ψ|Â|Ψ〉 =

i

~
〈Ψ|[Ĥ, Â]|Ψ〉+ 〈Ψ|∂Â

∂t
|Ψ〉 (1.39)

Thus the time dependence of the expectation value of an operator is given by

the expectation value of the commutator with the Hamilton operator as well as a

possible explicit time-dependence of the corresponding operator.

Example: Expectation values of the harmonic oscillator

Consider a mass m, which is fixed to a spring exerting the force −fx for

the elongation x from the point of rest. The corresponding potential

is V (x) = fx2/2 and we find the Hamiltonian

Ĥ =
p̂2

2m
+
f

2
x̂2
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Using [p̂2, x̂] = 2p̂~/i and [x̂2, p̂] = −2x̂~/i, see Eq. (1.26), we find

d

dt
〈Ψ|x̂|Ψ〉 =

i

~
〈Ψ|[Ĥ, x̂]|Ψ〉 =

1

m
〈Ψ|p̂|Ψ〉

d

dt
〈Ψ|p̂|Ψ〉 =

i

~
〈Ψ|[Ĥ, p̂]|Ψ〉 = −f〈Ψ|x̂|Ψ〉

Thus the expectation values satisfy the same equations of motion as

the momentum and position of a classical particle, which is called the

correspondence principle or Ehrenfest theorem. (More generally one

finds d
dt
〈Ψ|p|Ψ〉 = 〈Ψ|F (x̂)|Ψ〉 where F (x) is the force on the particle

at position x.)

1.4 Spatial Representation

In spatial representation, we use the eigenstates |x〉 of the space operator as basis

elements. Then the operators x̂ and p̂x can be written in the form of the matrices

〈x|x̂|x′〉 = xδ(x− x′) and 〈x|p̂x|x′〉 =
~
i

∂

∂x
δ(x− x′) . (1.40)

The first part follows directly from equations (1.21,1.22). The second part is much

more difficult to prove6. Here we show, that the given marix elements provide

the key commutation relation [p̂x, x̂] = ~
i

in spatial representation, which at least

demonstrates consistency. For this purpose we consider

〈x|[p̂x, x̂]|φ〉 =

∫
dx′
∫

dx′′ (〈x|p̂x|x′〉〈x′|x̂|x′′〉〈x′′|φ〉 − 〈x|x̂|x′〉〈x′|p̂x|x′′〉〈x′′|φ〉)

=

∫
dx′
∫

dx′′
(
~
i

∂

∂x
δ(x− x′)x′δ(x′ − x′′)φ(x′′)− xδ(x− x′)~

i

∂

∂x′
δ(x′ − x′′)φ(x′′)

)
=

∫
dx′
(
~
i

∂

∂x
δ(x− x′)x′φ(x′)− xδ(x− x′)~

i
φ′(x′)

)
=
~
i

∂

∂x

(
xφ(x)

)
− x~

i
φ′(x) =

~
i
φ(x)

where φ′(x) is a shorthand for the derivative of φ(x) with respect to x. Thus we

find 〈x|[p̂x, x̂]|φ〉 = ~
i
〈x|φ〉 as it should be.

6In the book J.J. Sakurai and J. Napolitano Moden Quantum Mechanics this is shown by

using the property of momentum to be the generator of translations
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Correspondingly, in three dimensions the spatial representation of the operators r̂

and p̂ is given by

〈r|r̂|r′〉 = rδ(r− r′) and 〈r|p̂|r′〉 =
~
i

∂

∂r
δ(r− r′) (1.41)

Multiplying Eq. (1.34) with 〈r| and inserting (1.23) for all three spatial coordinates,

the Schrödinger equation becomes

i~
∂

∂t
〈r|Ψ〉︸ ︷︷ ︸
=Ψ(r,t)

=

∫
d3r′〈r|Ĥ|r′〉 〈r′|Ψ〉︸ ︷︷ ︸

=Ψ(r′,t)

.

Now Eq. (1.41) shows that the basic operators r̂ and p̂ become diagonal in space.

Thus, arbitrary operators of the form f(r̂, p̂) can be written as

〈r|f(r̂, p̂)|r′〉 = f

(
r,
~
i

∂

∂r

)
︸ ︷︷ ︸

=f̂SR

δ(r− r′)

which defines the spatial representation f̂SR of an arbitrary operator f̂ , which can

be expressed in terms of the canonical variables r̂ and p̂. For the Hamiltonian

(1.35) this provides the common Schrödinger equation in spatial representation7

i~
∂

∂t
Ψ(r, t) = ĤSRΨ(r, t) with ĤSR = − ~2

2me

∇2 + V (r)

which has been used in the elementary quantum mechanics you studied in previous

courses.

1.5 Solving the Stationary Schrödinger Equation

by Diagonalization

Consider the stationary Schrödinger equation

Ĥ|ϕk〉 = Ek|ϕk〉 .
7Note that it is possible to define more general effective Hamilton operators, which are not

diagonal in space (a common example occurs in the Hartree-Fock approximation). Then, the

r′-integral has to be kept.
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For a given Hamilton operator Ĥ, the eigenvalues Ek and eigenstates |ϕk〉 are not

known. To solve the problem, we may begin by expanding the state |ϕk〉 in a basis

{|ai〉},
|ϕk〉 =

∑
i

Cki|ai〉 ,

where the {|ai〉} form a complete orthonormal set (ON base) in the Hilbert space

H . We recall that

Cki = 〈ai|ϕk〉 since |ϕk〉 =
∑
i

|ai〉〈ai︸ ︷︷ ︸
=1

|ϕk〉

Here, the summation index in principle runs from i = 1 to ∞. For almost all

practical purposes, one needs to restrict the set of basis functions to be finite,

which requires the consideration of a subspace as addressed in section 1.2.10. The

expansion for |ϕk〉 can now be inserted back into the Schrödinger equation:

Ĥ
∑
i

Cki|ai〉 = Ek
∑
i

Cki|ai〉 .

Multiplying by 〈aj| from left, we obtain for each j
∑

iCki〈aj|Ĥ|ai〉 = EkCkj, or∑
i

Cki(Hji − δjiEk) = 0 with the matrix Hji = 〈aj|Ĥ|ai〉 (1.42)

It can also be written in matrix form:
H11 − Ek H12 H13 . .

H21 H22 − Ek H23 . .

H31 H32 H23 − Ek . .

. . . .

. . . .





Ck1

Ck2

Ck3

.

.

.


= 0 (1.43)

The size of the matrix is then naturally N ×N , i.e. it (trivially) is determined by

the truncation of the basis. This leaves us with N coupled linear equations. This

can be solved, and we find the non-trivial solutions from the so-called “secular

equation”,

⇔ Det(Hji − δjiEk) = 0
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which gives us the N eigenvalues Ek through the possible roots of this equation.

For a specific Ek, one then obtains a specific set of coefficients (Ck,i). This gives

the eigenvector 

Ck1

Ck2

Ck3

.

.

.


associated to the kth eigenstate.

If the dimensionality of the problem is small, as for example with N = 3 or N = 4

basis states, such diagonalization can be done “by hand”, and in the exercises we

will treat some examples. For bigger matrix dimensions, however, one needs to

use numerical routines on a computer.

If the matrix is diagonal from the start, then the problem is trivial: The Hii

(diagonal elements) are the energy eigenvalues, and Cki = δk,i

Some important remarks

• Choice of basis functions

In principle, any ON set can be chosen as a base. However, the better the

choice, the easier is the task!

Basis functions that are close to the exact ones, are the best. Then, many

of the Cki’s are very small, and one may truncate very efficiently. The cal-

culation of the matrix elements can often be troublesome, since it involves

integrals. Always choose a ”nice” basis, that is well-behaving and can be

integrated - smooth functions that do not oscillate too wildly will do a good

job, and you do not want to have any divergent terms...

• Truncation of the basis

In most cases, you will need to truncate rather severely in order for the

problem to fit into the computer memory. Always assure, that your final

result does not depend on the truncation; i.e., check convergence of the
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crucial quantities (such as for example the energies) with respect to the

basis size! When you choose a larger basis, your results are not supposed to

change too much.

• Choice of diagonalization routines

For the diagonalization of the matrix on the computer, many different nu-

merical routines exist! The structure of your matrix determines which one

is the best. Check, whether the matrix is sparse, block-diagonal etc.

Finally, a comment on the relation to classical mechanics - Diagonalization

in a sense corresponds to a transformation to the axes of inertia in classical

mechanics.



Chapter 2

The Harmonic Oscillator

The harmonic oscillator is a very important example both in classical and quantum

physics. In the basic course we used an elementary method based on Schrödinger

equation in differential form. In this chapter we will use a more advanced method

based so on called step operators. Similar operator methods will frequently be

used in later chapters. Sections with a ∗ will only be treated loosely.

2.1 Algebraic Solution by Step Operators

We first study the one dimensional case. The Hamiltonian is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (2.1)

If we introduce dimensionless operators

P̂ =
1√
m~ω

p̂, X̂ =

√
mω

~
x̂ (2.2)

the Hamiltonian becomes

Ĥ =
1

2
~ω(P̂ 2 + X̂2) (2.3)

If P̂ and X̂ had not been operators then Ĥ could have been factorized:

H = 1
2
~ω(X − iP )(X + iP ). This is not possible because the operators do not

commute. Let us in any case introduce operators â and â†:

â =
1√
2

(X̂ + iP̂ ), â† =
1√
2

(X̂ − iP̂ ) (2.4)

27
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It is important to remember that these operators are not Hermitian. The following

commutator relations are useful

[X̂, P̂ ] =

√
mω

~
1√
m~ω

[x̂, p̂] =
1

~
i~ = i, (2.5)

[â, â†] =
1

2
[(X̂ + iP̂ ), (X̂ − iP̂ )] =

1

2

(
−i[X̂, P̂ ] + i[P̂ , X̂]

)
= 1 (2.6)

The Hamiltonian can be expressed in these operators if we note from (2.4) that

X̂ =
1√
2

(â† + â) and P̂ =
i√
2

(â† − â)

This gives

Ĥ =
1

2
~ω(P̂ 2 + X̂2) =

~ω
4

(
(â† + â)2 − (â† − â)2

)
=

~ω
2

(â†â+ ââ†)

=~ω
(
â†â+

1

2

) (2.7)

If we introduce the operator N̂ = â†â then Ĥ = ~ω(N̂ + 1
2
).

To get the energy spectrum we solve the eigenvalue problem for N̂ . Let |φn〉 be

an eigenstate and λn the corresponding eigenvalues so that N̂ |φn〉 = λn|φn〉. We

first note that the eigenvalues λn are non-negative:

λn = 〈φn|λn|φn〉 = 〈φn|â†â|φn〉 =
[
〈φn|â†

]
[â|φn〉] = 〈φ′n|φ′n〉 ≥ 0.

where |φ′n〉 = â|φn〉.

Secondly we will prove that the state â†|φn〉 is an eigenstate of N̂

N̂a†|φn〉 = â†ââ†|φn〉 = â†(â†â+ 1)|φn〉 = â†(N̂ + 1)|φn〉 = (λn + 1)â†|φn〉

(The expression ââ† = â†â + 1 follows directly from (2.6)). By operating on

eigenstates with â† we get a new eigenstate with an eigenvalue that has been

increased by 1. These kind of operators are called step operators. In the same way

the operator â decreases the eigenvalue by 1:

N̂ â|φn〉 = (λn − 1)â|φn〉 (2.8)

The proof is left as an exercise. By using relation (2.8) k times we obtain

N̂ âk|φn〉 = (λn − k)âk|φn〉 (2.9)
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But all eigenvalues to N̂ are as we have seen non-negative. This means that it

is not possible to continue forever generating new eigenstates by operating with

â. There must exist a state |φ0〉 such that â|φ0〉 = 0. Then N̂ |φ0〉 = â†â|φ0〉 = 0

which shows that λ0 = 0 is the lowest eigenvalue and consequently |φ0〉 is the

ground state of the Hamiltonian (2.7). Starting from this ground state it is easy

to generate new eigenstates by using the step operator:

â†|φ0〉 = α1|φ1〉, N̂ â†|φ0〉 = α1|φ1〉 ,
(â†)2|φ0〉 = α2|φ2〉, N̂(â†)2|φ0〉 = 2α2|φ2〉 ,
(â†)3|φ0〉 = α3|φ3〉, N̂(â†)3|φ0〉 = 3α3|φ3〉 , ...

where αn is a normalization constant and we see the eigenvalues of those states

are λn = n.

For the one-dimensional harmonic oscillator, we will show in Sec. 2.2 using spatial

representation that:

The set of eigenstates {|φn〉}∞n=0 is a complete set in the appro-

priate Hilbert space of the one-dimensional harmonic oscillator. This

means that we have found all eigenstates and the eigenvalues are non-

degenerate.

The eigenvalues of N̂ are all non-negative integers. This means that the energy

eigenvalues for the Hamiltonian (2.1) are

En = ~ω
(
n+

1

2

)
, for n = 0, 1, 2, ... (2.10)

This is one of the standard spectra that every student of physics should know. In

nature it is found mainly in vibrating systems such as molecules and nuclei.

Let us return to the final study of the step operators and the eigenstates. Because

of the non-degeneracy the following relation holds â|φn〉 = cn|φn−1〉 , cn=constant.

This constant can be determined as follows

|cn|2 = 〈φn−1|c∗ncn|φn−1〉 = 〈φn|â†â|φn〉 = 〈φn|n|φn〉 = n
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Figure 2.1: Energy levels for a one dimensional harmonic oscillator. The arrows

indicate the actions of the step operators

By custom one chooses the phase such that cn =
√
n. Thus

â|φn〉 =
√
n|φn−1〉 (2.11)

In a similar manner one easily obtains

â†|φn〉 =
√
n+ 1|φn+1〉 (2.12)

These relations suggest the names lowering and raising operators for â and â†.

By recursive use of (2.11) one can express all eigenstates as

|φn〉 =
1√
n!

(â†)n|φ0〉 (2.13)

With this choice of phases, one frequently replaces |φn〉 by the simplified notation

|n〉. Note that |0〉 is here the ground state of the harmonic oscillator, which is a

physical state with norm 1 and fundamentally different from |null〉, the only ket

with norm 0.

The expressions (2.11) and (2.12) are very useful in calculating matrix elements

as the following examples show.

Example: Calculate the matrix elements of â† in the basis of |n〉.
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〈m|â†|n〉 = 〈m|
√
n+ 1|n+ 1〉 =

√
n+ 1δm,n+1

When calculating matrix elements for x̂ or p̂ it is convenient to express these

operators in step operators. From (2.2) and (2.4) one gets

x̂ =

√
~

2mω
(â† + â), p̂ = i

√
m~ω

2
(â† − â) (2.14)

Example: Calculate the matrix elements of x̂2

Let us first express x̂2 in the step operators.

2mω

~
x̂2 = (â† + â)2 = (â†)2 + â†â+ ââ† + â2

It is useful to use the commutation relation to rearrange this expression

so that â† precedes â. We then get a normal ordered product.

(â†)2 + â†â+ ââ†+ â2 = (â†)2 + â†â+ â†â+1+ â2 = (â†)2 +2â†â+ â2 +1

It is now easy to calculate the matrix elements:

〈m|(â†)2|n〉 =〈m|â†
√
n+ 1|n+ 1〉 = 〈m|

√
n+ 1

√
n+ 2|n+ 2〉

=
√

(n+ 1)(n+ 2)δm,n+2

〈m|â†â|n〉 =〈m|n|n〉 = nδm,n

〈m|â2|n〉 =〈m|â†
√
n|n− 1〉 = 〈m|

√
n
√
n− 1|n− 2〉

=
√
n(n− 1)δm,n−2

For a given n only the following matrix elements are non-disappearing:

〈n+ 2|x̂2|n〉 =
~

2mω

√
(n+ 1)(n+ 2)

〈n|x̂2|n〉 =
~

2mω
(2n+ 1)

〈n− 2|x̂2|n〉 =
~

2mω

√
n(n− 1)
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Note that matrix elements in the common spatial representations are defined as

integrals and that we by this method have found a way to integrate a large class

of them by algebraic methods. It is also interesting to note that we do not need

to know any explicit formula for the eigenstate |n〉.

2.2 Eigenfunctions in spatial representation

We have so far not used any explicit representation of the eigenstates. Now the

eigenstates shall be evaluated in spatial representation 〈x|φn〉 = φn(x), which

are just the conventional wave-functions known from elementary courses. The

idea is here to calculate the ground state wave-function φ0(x) and then use the

raising operator to generate the wave-function for the excited states. We start

by expressing the step operators in spatial representation, where they become

differential operators:

â =

√
mω

2~
x̂+

i√
2m~ω

p̂→
√
mω

2~
x+

√
~

2mω

∂

∂x
=

1√
2

(
ξ +

∂

∂ξ

)
(2.15)

where ξ is the spatial representation of the dimensionless operator X̂ introduced

previously, i.e., ξ =
√

mω
~ x. In a similar manner one gets

â† → 1√
2

(
ξ − ∂

∂ξ

)
(2.16)

To get the ground state we solve the equation

â|φ0〉 = 0→
(
ξ +

∂

∂ξ

)
φ0(ξ) = 0

which gives

φ0(ξ) = c0e
− ξ

2

2

The constant c0 can be determined by normalization: c0 = π−1/4 Equation (2.13)

gives us the expression for an arbitrary state:

φn(ξ) = c0
1√
2nn!

(
ξ − d

dξ

)n
e−

ξ2

2 . (2.17)
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This could be rewritten to a more accessible form if we note that(
ξ − d

dξ

)(
e
ξ2

2 u(ξ)
)

= ξe
ξ2

2 u− ξe
ξ2

2 u− e
ξ2

2 u′ =

(
− e

ξ2

2
d

dξ

)
u

Let us use this formula n times:(
ξ − d

dξ

)n
e−

ξ2

2 =

(
ξ − d

dξ

)n
e
ξ2

2 e−ξ
2

= (−1)ne
ξ2

2
dn

dξn
e−ξ

2

(2.18)

The Hermite polynomials are defined by the relation

Hn(ξ) = (−1)neξ
2 dn

dξn
e−ξ

2

(2.19)

The first four are:

H0(ξ) = 1 H1(ξ) = 2ξ

H2(ξ) = 4ξ2 − 2 H3(ξ) = 8ξ3 − 12ξ

Hn(ξ) has parity (−1)n and degree n. An explicit expression for an arbitrary

eigenstate is

φn(x) =

(
mω

π~

)1/4(
2nn!

)−1/2
Hn(ξ)e

−ξ2
2 , ξ =

√
mω

~
x (2.20)

(This state is normalized with respect to integration over x explaining the different

prefactor.) We can now prove that we have indeed found all eigenstates and that

the spectrum is non-degenerate. This follows from the fact that the Hermite

polynomials form a complete set in the appropriate Hilbert space.

2.3 Two- and Three-Dimensional Harmonic Os-

cillator

In many applications harmonic oscillators with two or three dimensions are used.It

is rather straight forward to extend the theory to higher dimensions.The Hamil-

tonian for a two dimensional oscillator is

Ĥ =
1

2m
(p̂2
x + p̂2

y) +
1

2
mω2(x̂2 + ŷ2) = ~ω(â†xâx + â†yây + 1) (2.21)
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Figure 2.2: Spectrum for a two dimensional harmonic oscillator. The degeneracy

is marked in the level scheme.

with the step operators âx and ây

âx =

√
mω

2~
x̂+ i

1√
2m~ω

p̂x , ây =

√
mω

2~
ŷ + i

1√
2m~ω

p̂y (2.22)

Note that âx and ây commute. The eigenvalues to (2.21) are determined as in one

dimensional case to be

Enxny = ~ω(nx + ny + 1) (2.23)

where nx and ny are non-negative integers. The corresponding eigenstates are in

spatial representation

φnxny(x, y) = φnx(x)φny(y) (2.24)

These states are degenerate. To determine the degeneracy, we have to count the

number of different ways that two non-negative integers can be added to give the

result N . Thus N = nx +ny. nx can be chosen in N + 1 different ways. But when

ny is determined to be N − nx. The degeneracy is thus N + 1. This also follows

directly from figure (2.2).

In three dimensions the Hamiltonian is

Ĥ = ~ω
(
â†xâx + â†yây + â†zâz +

3

2

)
(2.25)
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Figure 2.3: Spectrum for a three-dimensional harmonic oscillator with degeneracy.

with eigenvalues

Enxnynz = ~ω
(
nx + ny + nz +

3

2

)
(2.26)

and eigenstates in spatial representation

φnxnynz(x, y, z) = φnx(x)φny(y)φnz(z) (2.27)

It is a little trickier to determine the degeneracy in this case. In how many ways

can three non-negative integers can be chosen when their sum is given? Denote

N = nx + ny + nz. If nx is fixed then one can choose ny and nz in ny + nz + 1 =

N−nx+1 different ways as was found in the two dimensional case. But for a given

N, nx can be picked in N + 1 different ways. The total number of possibilities is

N∑
nx=0

(N − nx + 1) =
(N + 1) + 1

2
(N + 1) =

1

2
(N + 2)(N + 1). (2.28)

In spatial representation the Hamiltonian becomes

Ĥ → − ~2

2m
∆ +

1

2
mω2(x2 + y2 + z2) = − ~2

2m

1

r

∂2

∂r2
r +

L2

2mr2
+

1

2
mω2r2 (2.29)

where we have used spherical coordinates. The eigenstates to this spherical sym-

metric operator can be written as

φnlm(r, θ, ϕ) =
unl(r)

r
Y m
l (θ, ϕ) (2.30)
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For given quantum numbers n and l there is 2l+1 -fold degeneracy and the energy

does not depend on m. The eigenvalue equation reduces to an ordinary differential

equation:

− ~2

2m
u′′nl +

(
~2l(l + 1)

2mr2
+

1

2
mω2r2

)
unl = Enlunl (2.31)

We will not solve this equation here, but only give some results: The energy

eigenvalues are, of course, the same as before but depend on the quantum numbers

in a different way:

En,l = ~ω
(

2n+ l +
3

2

)
(2.32)

Obviously if N = 2n+ l is even (odd) then also l is even(odd). If N = 0 the only

values are: n = 0 and l = 0. The first excited state has N = 1. Then n = 0 and

l = 1. In addition to this there are different m-values so that the degeneracy is 3

as we have already found. The eigenfunctions corresponding to this first excited

state span a three dimensional subspace. There are as we have seen two natural

bases in this subspace, corresponding to either Cartesian or spherical coordinates.

2.4 Harmonic Oscillator Model for Many-Particle

Systems∗

2.4.1 Mean-field model and shell structure

So far, we have mainly been concerned with the single-particle properties of a

quantum system, i.e. the eigenstates of a single particle trapped by a confinement

potential. Many of the quantal systems occurring in nature, however, confine many

particles, and it is the interaction between all these particles that determine the

physical behavior of the quantum system as a whole. A famous example is the

atom, with its nucleus being a many-particle system made from the nucleons, and

its outer shell of many electrons, determining the structure of the periodic table.
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Figure 2.4: Three dimensional harmonic oscillator in spherical coordinates. The

figure shows the orbital quantum number and the degeneracy.

The quantum-mechanical description of such many-particle systems is a cumber-

some task, and yet today, despite all the power of computation, large many-particle

quantum systems can only be treated rather phenomenologically.

One of the simplest approximate models is based on the idea that the interactions,

possibly together with an external confinement, create an average “mean field”,

which models the action of all the quantum particles on each other: Instead of

individual particle-particle interactions, non-interacting particles are then assumed

to move in a modified, effective confinement, that accounts for the interactions of

all the particles with each other.

This a priori rather simple idea forms the basis of more complicated theories (some

of which we will touch later on in these lecture notes).

The distribution of single-particle energy levels of the mean-field potential can be

non-uniform and bunches of degenerate or nearly degenerate levels, being separated

from other levels by energy gaps, can occur. Such groupings of levels are also called

“shells”, just like in atoms. They are schematically drawn in Fig. 2.5.

Shell structure is a consequence of both the dimensionality and of the symmetry
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Figure 2.5: Schematic illustration of the bunching of single-particle states (shell

structure) in a finite fermion system. The binding energy is lower, if the single-

particle level density at the Fermi energy has a minimum (after Brack et al., 1972).

of the mean field potential. A high degree of symmetry results in a pronounced

level bunching 1

This level bunching is manifested in many of the physical properties of finite,

quantal many-fermion systems, like, for example, in their stability, in the ionization

energies, the chemical reactivity or in the conductance.

In the mean-field model in its very simplest form, the eigenstates of the mean-

field potential (that models the confinement of the quantum particles together

with their average interactions with each other) are filled with non-interacting

fermions, respecting the Pauli principle. At zero temperature, the lowest states

are filled up to a certain level, where one runs out of particles. This level is usually

called the “Fermi level”.

The density of single-particle states at the Fermi energy is of particular importance

for the stability of the system. If it is at a minimum, the particles occupy states

with a smaller energy on average, and consequently, the system is more bound:

1see for example, Funny Hills: The Shell Correction Approach to Nuclear Shell Effects and

its application to the fission process by M. M., J. Damgaard, A.S. Jensen, H.C. Pauli, V.M.

Strutinsky, and C.Y. Wong, 1972, Rev. Mod. Phys. 44, 320.
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shell filling leads to particularly stable states. Here, the nobel gases are very

good examples. If a shell is not filled, however, the system can stabilize itself by

spontaneously breaking its internal symmetry. For atomic nuclei, for example, such

a spatial deformation of the mean field was confirmed by an analysis of rotational

spectra2

More recently, similar effects were observed from plasmon resonances of metallic

clusters.

In a finite quantal system of fermions, the stability condition is that there is no

unresolved degeneracy at the Fermi energy. This condition is met for certain

numbers of confined particles, for which a degenerate shell with a large energy gap

to the next, unoccupied shell can be filled.

2.4.2 Shell structure of the 2D anisotropic harmonic oscil-

lator

We illustrate this with the example of an anisotropic harmonic oscillator confine-

ment in two dimensions (x, y),

V (x, y) =
1

2
m∗ω2

0

(
δx2 +

1

δ
y2

)
, (2.33)

as an empirical mean-field potential in which a number of N fermions with an

effective mass m∗ are assumed to move independently. The ratio δ = ωx/ωy with

frequencies ωx = ω0

√
δ and ωy = ω0/

√
δ defines the ratio of semi-axes of the

ellipse equipotentials. Imposing the constraint ω2
0 = ωxωy conserves their area

with deformation. The corresponding single-particle energy spectrum

εnx,ny(δ) = ~ω0

[
(nx +

1

2
)
√
δ + (ny +

1

2
)/
√
δ

]
(2.34)

is shown as a function of deformation δ in Fig. 2.6 (left). In the isotropic case δ = 1,

one clearly recognizes the (N0+1)-fold degeneracy for a principal quantum number

N0 = nx + ny = 0, 1, 2, ... . Filling the states with non-interacting fermions,

respecting the Pauli principle and including spin degeneracy with a factor of two,

closed shells can be reached for a sequence of N = 2, 6, 12, 20... particles.

2see the books on Nuclear Structure by Å. Bohr and B. R. Mottelson, 1975
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Figure 2.6: Left: Single-particle states of a two-dimensional anisotropic harmonic

oscillator as a function of deformation (δ > 1). Degeneracies in the isotropic

case (δ = 1) lead to closed shells for N = 2, 6, 12, 20, ... (for non-interacting

fermions, including spin degeneracy) and subshells occur at frequency ratios δ =

q/p for integer q, p. Right: Total energies
∑

nx,ny
εnx,ny of the anisotropic harmonic

oscillator for N = 2, 4, 6, 8, 10, and 12 non-interacting particles as a function of

deformation.

For these configurations, particular stability is reached, as the degeneracy of the

shell is resolved and the density of states is minimal at the Fermi energy. Adding

one more electron to a closed shell would result in single occupancy of an orbit

belonging to the next, higher shell, and the system would be less stable. In the

case of open shells, however, the degeneracy can be lowered by deformation and

an energetically more favorable configuration can be reached.

In particular, for non-circular shapes, subshells with degeneracies comparable to

the non-deformed case can occur, leading to a pronounced stability at the corre-

sponding deformation.

Figure 2.6 (right) shows the total energies
∑

nx,ny
εnx,ny(δ). We see that depending

on the number of confined particles and deformation, cusps and minima in the total

energy occur for δ > 1 at frequency ratios where more pronounced subshells are
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formed. As it is already obvious from the shell patterns in the single-particle

spectra, configurations with N = 2, 6, or 12 particles have lowest energies in the

isotropic case, while for N = 4, 8 or 10, the energy can be lowered by deformation.

Despite the simplicity of this example, it already contains some of the basic fea-

tures of a finite, fermionic quantum system: the occurrence of shells and the

corresponding stability for closed-shell configurations, and the tendency to spon-

taneously break the symmetry of the mean field in the case of open shells. Sub-

shell closings enhance the stability for the broken-symmetry states compared to

the non-deformed, open-shell system.

2.4.3 “Magic numbers” in finite fermion systems

The periodic table with the appearance of its eight groups of elements showing

similar chemical properties is the most widely appreciated example of shell struc-

ture. Atomic shells are most strikingly seen in the pronounced maxima of the

ionization energies of neutral atoms for certain atomic numbers Z = 2, 10, 18...,

corresponding to the noble gases He, Ne, Ar, ... (cf. upper left panel of Fig. 2.7).

The spherical symmetry of the very rigid confinement of the electrons caused by

the strong Coulomb potential of the nucleus results in large degeneracies at the

mid-shell regions. These shells are then populated according to Hund’s rules: due

to the Pauli principle and the repulsive Coulomb interaction, the spin is maximized

for half-filled orbitals.

In nuclei, the separation energy (i.e. the energy that is required to remove a

nucleon from the nucleus) of neutrons and protons shows sharp steps for certain

particle numbers, originating from the shell structure (lower left panel of Fig. 2.7).

These steps are very similar to the abrupt decrease of the atomic ionization po-

tentials for electron numbers that exceed the atomic shell closings by one.

Parameterizing an average mean-field potential and including spin-orbit coupling,

Goeppert-Mayer (1949) and Haxel, Jensen, and Suess (1949) could formulate a

shell model that successfully explained the “magic numbers” of nucleons for which

particular stability was observed.

In the early eighties finite-size clusters of atoms attracted much interest: they
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Figure 2.7: Shell structure and “magic numbers” in finite fermion systems. Left,

upper panel: Atomic ionization energies. Lower panel: Separation energies of

atomic nuclei, after Bohr and Mottelson, 1975. Right, upper panel: Abundance

spectra of metallic clusters (counting rate in arbitrary units) (after W.D. Knight,

Clemenger, K., de Heer, W.A., Saunders, W.A., Chou, M.Y., and Cohen, M.L.,

1984, Phys. Rev. Lett. 52, 2141). Lower panel: Differences in the chemical

potential µ(N + 1) − µ(N) of disk-shaped quantum dots. Inset: Device setup,

schematic (From Tarucha, S., D.G. Austing, T. Honda, R.J. van der Haage, and

L. Kouwenhoven, 1996, Phys. Rev. Lett. 77, 3613.)
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provided a link between the physics of single atoms or the smallest molecules,

and the solid. Knight et al. (1984) succeeded to fabricate clusters consisting of a

few up to hundreds of alkali atoms by supersonic expansion of a mixture of metal

atoms and a carrier gas through a tiny nozzle. Condensation of droplets and

subsequent evaporation of single atoms until equilibrium was reached, produced

stable clusters which could then be counted and size-selected. The anomalies in the

mass abundance spectra, i.e. the counting rates of clusters with a given number

of atoms per cluster, are striking: for certain numbers of atoms, one observes an

enhanced stability of the cluster. The upper right panel of Fig. 2.7 shows the cluster

counting rate (in arbitrary units) as a function of the number of atoms per cluster:

pronounced maxima are observed for clusters with 2, 8, 20, 40, and 58 atoms. This

reminds us of the “magic numbers” in nuclei mentioned above. A metal cluster

can be described in a simple model which assumes that the delocalized valence

electrons experience a homogeneous positive charge background (“jellium”) of the

atom ions. This approach has long been used in solid state physics to describe, for

example, metal surfaces, or voids in metals. Indeed, the jellium model of metals

provided an explanation for the enhanced stability of clusters with specific sizes.

In beautiful analogy to atoms, nuclei, or clusters, shell structure can also be ob-

served in the conductance spectra of small semiconductor quantum dots. As an

example, the inset to Fig. 2.7 (lower right panel) schematically shows the device

used by Tarucha et al. (1996): in an etched pillar of semiconducting material, a

small, quasi two-dimensional electron island is formed between two heterostruc-

ture barriers. The island can be squeezed electrostatically by applying a voltage

to the metallic side gate which is formed around the vertical structure. The dot

is connected to macroscopic voltage and current meters via the source and drain

contacts. Measuring the current as a function of the voltage on the gates at small

source-drain voltage, one observes current peaks for each single electron subse-

quently entering the dot. The spacing between two subsequent current peaks is

proportional to the difference in energy needed to add another electron to a dot

already confining N particles. This quantity is plotted in Fig. 2.7 (lower right

panel) for two different dots with diameters D = 0.5 µm and D = 0.44 µm and

shows large amplitudes at electron numbers N = 2, 6, 12. Indeed, these numbers

correspond to closed shells of a two-dimensional harmonic oscillator. As we shall

discuss later in this course, the additional structures at the mid-shell regions are
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Figure 2.8: A one dimensional model for lattice vibrations.

a consequence of the spin alignment due to Hund’s rules, in much analogy to the

atomic ionization spectra.

2.5 Phonons

As a last example of harmonic oscillators we will treat coupled oscillations of a

chain of particles. This is a one-dimensional model for the real three dimensional

crystal vibrations which play an important role in solid state physics. It is an

important example also from a fundamental point of view, because we will here

for the first time encounter collective quantum states. In these states there is a

coherent motion of a large number of particles in contrast with the single particle

states that have been studied up to now.

Consider a chain of N balls that are closed to a ring (”rosary”). Each ball has

the same mass and between the balls there are identical harmonic springs. The

distance between the balls in equilibrium is a and the spring constant is g.

As a first step we will study longitudinal classical waves on the rosary. Ball #l

has the equilibrium position x = al. By ul we denote the displacement from this

point. The classical equation of motion follows from figure 2.9

The Newton equation of motion for ball #l is

m
d2ul
dt2

= g
(
(ul−1 − ul)− (ul − ul+1)

)
= g(ul−1 − 2ul + ul+1) (2.35)
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Figure 2.9: Displacement along the rosary.

While the chain is closed we have periodic boundary conditions

ul+N = ul . (2.36)

Motivated by a wave-type elongation u(x, t) = Aei(kx−ωt) for the discrete points

xl = al we will now seek solutions to (2.35) in the form of

ul(t) = Aei(kal−ωt). (2.37)

From the periodic boundary condition (2.36):

ei(kal−ωt) = ei(k(a(l+N))−ωt) ⇒ eikNa = 1⇒ kNa = 2πr′ with r′ ∈ Z

Now k values, which differ by multiples of 2π/a provide identical elongations for

all lattice sites in Eq. (2.37). Thus one can restrict to −π/a < k ≤ π/a (which is

actually called the first Brillouin zone for crystals). Assuming in the following an

even number N of balls, the corresponding k values, which describe the different

collective waves off the chain, can be numbered in the form

kr =
2π

Na

(
r − N

2

)
with r = 1, 2, . . . N (2.38)

Note that the number of different collective waves (or modes) equals the number

of balls on the chain. Using the ansatz(2.37) in the equation of motion we get

−mω2ei(kla−ωt) = gAei(k(l−1)a−ωt) − 2ei(kla−ωt) + ei(k(l+1)a−ωt). (2.39)

Some trivial algebra gives ω2 = 2g
m

(1 − cos(ka)) = 4g
m

sin2
(
ka
2

)
. The dispersion

relation is then given by

ω(k) = 2

√
g

m

∣∣∣∣sin(ka2
)∣∣∣∣ . (2.40)
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Figure 2.10: The dispersion relation for a harmonic wave along the rosary.

This function is plotted in Fig. 2.10

Let us now turn to the quantum mechanical problem. The Hamiltonian is in this

case the sum of kinetic and potential energy. The potential energy is stored in the

stressed springs. One gets

Ĥ =
1

2m

∑
p̂2
l +

g

2

∑
(ûl − ûl−1)2. (2.41)

Here ûl and p̂l are quantum mechanical operators that satisfies the usual commu-

tation relations between position and momentum operators: [ûl, p̂l] = i~. In the

case of several particles we generalize

[ûl, p̂l′ ] = i~δll′ (2.42)

When the classical wave (2.37) propagates through the lattice all balls move at the

same time with the same amplitude but with different phases. We define collective

operators as follows.

Ûk =
1√
N

N−1∑
l=0

eiklaûl, P̂k =
1√
N

N−1∑
l=0

e−iklap̂l (2.43)

We shall soon see that the Hamiltonian becomes simpler if we change to these

operators. Note that these operators are non-Hermitian. It is obvious that Û †k =

Û−k, P̂ †k = P̂−k
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The commutator between these operators is

[Ûk, P̂k′ ] =
1

N

∑
ll′

ei(kl−k
′l′)a[ûl, p̂l′ ] =

i~
N

∑
ll′

ei(kl−k
′l′)aδll′

=
i~
N

∑
l

ei(k−k
′)la = i~δkk′

(2.44)

We have summed a geometrical series to obtain

N−1∑
l=0

ei(k−k
′)la =

N−1∑
l=0

(ei(k−k
′)a)l =

1− ei(k−k′)Na

1− ei(k−k′)a
=

{
0 k 6= k′

N k = k′
(2.45)

for the k-values satisfying Eq. (2.38). The relations (2.43) are some kind of discrete

Fourier transform. These transforms can be inverted in the usual manner.

ûl =
1√
N

∑
k

e−iklaÛk , p̂l =
1√
N

∑
k

eiklaP̂k (2.46)

We can rewrite the Hamiltonian (2.41) with these expressions. A small tech-

nical difficulty comes from the fact that the operators defined by (2.43) are non-

Hermitian. A simple way out is to rewrite the Hamiltonian in an explicit Hermitian

way

Ĥ =
1

2m

∑
p̂†l p̂l +

g

2

∑
(û†l − û

†
l−1)(ûl − ûl−1) . (2.47)

Using (2.46) we can after some algebra write (2.47) as

Ĥ =
∑
k

(
1

2m
P̂ †k P̂k +

1

2
mω2(k)Û †kÛk

)
. (2.48)

The dispersion relation ω(k) is the same as the classical case given by (2.40). The

Hamiltonian is the sum of independent, one dimensional harmonic oscillators. As

for ordinary operators we can for each k-value define the step operators

âk =

√
mω(k)

2~
Ûk + i

1√
2m~ω(k)

P̂ †k

â†k =

√
mω(k)

2~
Û †k − i

1√
2m~ω(k)

P̂k

(2.49)

It is left as an exercise to prove the commutation relations

[âk, â
†
k′ ] = δkk′ , [âk, âk′ ] = 0 , and [â†k, â

†
k′ ] = 0 (2.50)
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All other commutators are zero. The Hamiltonian can be expressed in step oper-

ators as

Ĥ =
∑
k

~ω(k)

(
â†kâk +

1

2

)
(2.51)

As for ordinary one-dimensional step operators the commutation relation (2.50)

results in the eigenvalue relation

â†kâk|φ
(k)
n 〉 = nk|φ(k)

n 〉 for nk = 0, 1, 2, . . . (2.52)

for each mode k. Now we apply the numbering from Eq. (2.38) and use the natural

numbers r = 1, 2, . . . N to describe the different k-modes. Then each mode is in a

certain state nr and the total energy for the Hamiltonian (2.51) is just given by

En1,n2,... =
∑
r

~ω(kr)

(
nr +

1

2

)
. (2.53)

The eigenvalue problem is now formally solved. The corresponding eigenstates

can be constructed from the ground state, corresponding to the quantum numbers

n1 = n2 = ... = 0 which is just |0, 0, . . .〉 and is defined by

âkr |0, 0, . . .〉 = 0 for all r . (2.54)

By applying the step operator â†kr one obtains

â†kr |0, 0, . . .〉 = |0, 0, . . . , nr = 1, 0, ...〉 (2.55)

The energy of this new state is ~ω(kr) above the ground state energy. The quantum

state |0, 0, ..., nr = 1, 0, ...〉 corresponds to a classical wave with wavenumber kr.

Such a quantized wave carries both momentum and energy and is in many respects

similar to a photon and is called a phonon. The energy of the phonon is ~ω(kr) in

close analogy with the photon case. The operator â†kr is naturally called phonon

creation operator.

Repeating this operation, we obtain the general state as

|n1, n2, . . . nN〉 =

[
N∏
r=1

1√
nr!

(
â†kr

)nr]
|0, 0, . . .〉 (2.56)
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The ground state |0, 0, ...〉 is called the phonon vacuum. It is customary to redefine

the energy so that this state has the energy 0. To do this one subtracts a constant

sum from the Hamiltonian3 and gets

Ĥ =
∑
r

~ω(kr)â
†
kr
âkr , En1,n2,... =

∑
r

~ω(kr)nkr . (2.57)

Example: Show that |0, 0, . . . nr = 2, 0, . . .〉 defined by Eq. (2.56) is indeed an

eigenstate of Ĥ as in Eq. (2.57)

We have

|0, 0, . . . nr = 2, 0, . . .〉 =
1√
2

(â†kr)
2|0, 0, . . .〉

Now we consider

Ĥ|0, 0, . . . nr = 2, 0, . . .〉 =
1√
2

∑
r′

~ω(kr′)â
†
kr′
âkr′ (â

†
kr

)2|0, 0, . . .〉

For r′ 6= r the commutation relation (2.50) provide âkr′ (â
†
kr

)2 = (â†kr)
2âkr′

and thus we can use the fact that âkr′ |0, 0, . . .〉 = 0 to show that these

terms do not provide any contribution. Thus only the term r′ = r of

the sum survives. Now the commutation relations (2.50) provide

âkr â
†
kr
â†kr = (â†kr âkr + 1)â†kr = â†kr(â

†
kr
âkr + 1) + â†kr = â†kr â

†
kr
âkr + 2â†kr

Thus we find

Ĥ|0, 0, . . . nr = 2, 0, . . .〉 =
1√
2
~ω(kr)2(â†kr)

2|0, 0, . . .〉

=2~ω(kr)|0, 0, . . . nr = 2, 0, . . .〉

and the state is indeed an eigenstate with the correct energy.

3While the ground state energy is neglected in many cases, it actually can play a role, if the

frequency of the phonon modes changes by an external parameter (such as, e.g. a change of the

coupling g following the geometry of the chain), which changes the total energy of the ground

state. This corresponds to an effective force on the system. The same effects appears in the

quantisation of the electromagnetic field, where this force is called Casimir force. It has some

relevance in microstuctured geometries, see A.W. Rodriguez, F. Capasso, and S.G. Johnson,

Nature Photonics, 5, 211 (2011)
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In a similar way this can be shown for arbitrary phonon states. This shows that

phonons can be created one after each other independently of each other, which

means that they do not interact with each other. Furthermore there can be arbi-

trarily many phonons in each state. (This is entirely different from the filling of

electronic states, where the Pauli principle forbids multiple occupancy.) With the

help of creation and annihilation operators all other operators representing physi-

cal entities can be constructed. We thus have a complete mathematical model to

describe the physics of lattice vibrations. In order to use it in solid state physics

we must consider vibrations in three-dimensional structures in transverse and lon-

gitudinal modes.

2.6 Coherent states∗

The energy eigenstates |n〉 provide the expectation values

〈n|x̂|n〉 = 0 and 〈n|p̂|n〉 = 0

Thus they do not resemble a classical oscillation, where x and p oscillate in time.

However there are states |Ψ(t)〉 which resemble the classical picture in a much

better way. A very interesting class of such states are the coherent (or Glauber)

states

|α〉 =
∑
n

e−|α|
2/2 α

n

√
n!
|n〉 for arbitrary complex α (2.58)

These states are actually eigenstates of the lowering operator

â|α〉 =
∑
n

e−|α|
2/2 α

n

√
n!

√
n|n− 1〉 = α

∑
n

e−|α|
2/2 αn−1√

(n− 1)!
|n− 1〉 = α|α〉 (2.59)

with eigenvalue α. (Note that â is not Hermitean. Thus, eigenstates to different

eigenvalues α are neither orthogonal, nor do they satisfy the closure relation.)

As the coherent states are not eigenstates of the Hamiltonian, they have a more
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complicated time dependence. For the initial condition |Ψ(t = 0)〉 = |α0〉 we find

|Ψ(t)〉 =
∑
n

e−|α0|2/2 α
n
0√
n!

e
−i

(
n+

1
2

)
ωt|n〉 = e−iωt/2

∑
n

e−|α0e−iωt|2/2
(
α0e−iωt

)n
√
n!

|n〉

=e−iωt/2|α(t)〉 with α(t) = α0e−iωt

(2.60)

Thus an initial coherent states is also a coherent states for later time with a change

in the phase of α (as well as a multiplicative phase e−iωt/2, which is not of relevance

for any observable).

In order to calculate the expectation values of space and momentum we use

Eq. (2.14) and 〈α|â† = α∗〈α|. Then we find

〈α|x̂|α〉 =

√
~

2mω
(α∗ + α) =

√
2~
mω

Re {α} (2.61)

〈α|p̂|α〉 = i

√
~mω

2
(α∗ − α) =

√
2~mω Im {α} (2.62)

With the time dependence α(t) = α0e−iωt, the averages reproduce the classical

trajectories in phase space, as can be seen in Fig. 2.11.

In the same spirit (and using ââ† = â†â+ 1) we obtain

〈α|x̂2|α〉 =
2~
mω

(Re {α})2 +
~

2mω
(2.63)

〈α|p̂2|α〉 = 2~mω(Im {α})2 +
~mω

2
(2.64)

This provides the variance

∆x =
√
〈α|x̂2|α〉 − 〈α|x̂|α〉2 =

√
~

2mω
(2.65)

∆p =
√
〈α|p̂2|α〉 − 〈α|p̂|α〉2 =

√
~mω

2
(2.66)

which describe the scattering of measurement results around the expecation value

as indicated in Fig.2.11. We find that ∆x is just the maximal elongation divided

by 2|α|. Thus the relative fluctuations in the measurement results for the position

vanish in the limit of larger |α|. The same holds for ∆p, so that we recover
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Figure 2.11: Motion of a Glauber state with α0 = 3. The red circle is the classical

trajectory, which is identical to the expectation values for space and momentum.

The magenta area denotes the range of typical measurement values for x and p at

a given time. (Note that only one of them can be measured for each preparation

of the system.)

the classical behavior with well defined position and momentum for |α| → ∞.

Furthermore we find the product

∆x∆p =
~
2

(2.67)

which is the lowest possible value according to the Heisenberg uncertainty relation.



Chapter 3

Angular momentum

3.1 Orbital Angular Momentum and Rotations

Following the classical expression, the operator of (orbital) angular momentum is

L̂ = r̂× p̂. The canonical commutation relations between r̂ and p̂ provide

[L̂j, L̂k] = i~
∑
l

εjklL̂l (3.1)

where εjkl is the Levi-Civita symbol.1 Now we shall relate these to rotations in the

three dimensional space.

3.1.1 Rotations

A rotation ÛR transforms an arbitrary quantum state |Ψ〉 into the rotated state

|Ψ′〉. Now we consider this rotation for quantum states in spatial representation,

i.e. wave functions Ψ(r). The same operation can be performed to the spatial

vectors in the form r′ = Rr. Consider for a certain point r0 in space the value

the rotated wave function Ψ′(r) = ÛSR
R Ψ(r) at the rotated position r′0 = Rr0.

Obviously, this value is equal to the original wave function at the original position,

i.e., Ψ′(r′0) = Ψ(r0) holds. Now we set r1 = r′0 and find R−1r1 = r0. Thus we

1εjkl = 0 if two or three of the indices are equal. Otherwise ε123 = ε231 = ε312 = 1 (cyclic

permutation of 123) and ε132 = ε213 = ε321 = −1.

53
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Figure 3.1: We consider a rota-

tion R of π/4 (45◦) around the

origin. The spatial vector r is

mapped accordingly to r′ and the

wave function Ψ(r) to Ψ′(r). We

see that Ψ′(r) is the same as

Ψ(R−1r), where the argument is

rotated backwards (ϕ → ϕ −
π/4).

identify Ψ′(r1) = Ψ(R−1r1). Now any point in space r can be identified with r1

by constructing an appropriate r0 = R−1r, so that we have the general identity

ÛSR
R Ψ(r) = Ψ′(r) = Ψ(R−1r)

which is schetched in Fig. 3.1. In particular we consider an infinitesimal rotation

with angle δφφφ, where the direction of the vector denotes the axis of rotation. We

find Rr = r + δφφφ× r and

Ψ′(r) =Ψ(r− δφφφ× r) ≈ Ψ(r)− (δφφφ× r) · ∇Ψ(r)

=Ψ(r)− i

~
δφφφ ·

(
r× ~

i
∇
)

Ψ(r) =

(
1− i

~
δφφφ · L̂SR

)
Ψ(r)

where L̂SR is just the spatial representation of L̂. In the second line we used the

fact, that ∇ can be treated as a vector, and the cyclic properties of the triple

product.

The spatial representation of the orbital angular momentum L̂SR = r × ~
i
∇

generates infinitesimal rotations of wavefunctions in the three-dimensional space.

For a finite angle φφφ, we can integrate the infinitesimal relation and find

Ψ′(r) = e−iφφφ·L̂SR/~Ψ(r)

so that the the rotation by an angle φφφ is given by the operator

Ûφφφ = e−iφφφ·L̂/~ =
∞∑
n=0

1

n!

(
−iφφφ · L̂

~

)n

(3.2)
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Note that Ûφφφ is unitary because L̂ is Hermitian.

Now we want to relate the commutations relations (3.1) to the properties of rota-

tions in space. Here we treat [L̂x, L̂y] explicitly, the others are fully analogous.

Consider two rotations around the x and y axis by (small) angles φx and φy,

which we call Ûx and Ûy, respectively. They can be performed in two different

sequences as ÛxÛy or ÛyÛx. If the sequence does not play a role the product

(ÛyÛx)
−1ÛxÛy = ÛSR−1

x ÛSR−1
y ÛxÛy should be the unit operator. (Note here that

(ÂB̂)−1 = B̂−1Â−1 holds generally for linear operators.) We calculate this up to

order φ2 and find:

Û−1
x Û−1

y ÛxÛy =

(
1 +

iφxL̂x
~
− (φxL̂x)

2

2~2

)(
1 +

iφyL̂y
~
− (φyL̂y)

2

2~2

)

×

(
1− iφxL̂x

~
− (φxL̂x)

2

2~2

)(
1− iφyL̂y

~
− (φyL̂y)

2

2~2

)
+O{φ3}

=1 +
φxφy
~2

(
−L̂xL̂y + L̂yL̂x

)
+O{φ3}

=1− i

~
φxφyL̂z +O{φ3}

Thus the commutator relation [L̂x, L̂y] = i~L̂z implies that a rotation around the z

axis by the angle φxφy remains, and the order in which rotations around different

axis are performed is not arbitrary.

Exercise: Try this by rotating a box subsequently by 90◦ in y-direction, by 90◦

in x-direction, by −90◦ in y-direction, and by −90◦ in x-direction. What do you

find? (You need much smaller angles in order to find a pure z rotation as a result.)

The fact that the commutator between L̂x and L̂y is finite, relates to the geomet-

rical observation, that rotations around the x and y axis do not commute.

3.1.2 Spectrum and eigenstates

In spatial representation the operators of the orbital angular momentum can be

easily expressed in spherical coordinates (r, θ, ϕ) as

L̂SR
z =

~
i

∂

∂ϕ
(L̂SR)2 = −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

]
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Thus eigenstates of L̂SR
z satisfy

L̂SR
z Ψ(r, θ, ϕ) = m~Ψ(r, θ, ϕ) ⇒ Ψ(r, θ, ϕ) ∝ eimϕ

As Ψ(r, θ, ϕ+ 2π) = Ψ(r, θ, ϕ) holds in the three dimensional space, we obtain the

condition that m ∈ Z. Thus the operator (L̂SR)2 can only have the eigenvalues

l(l + 1)~2 with l ∈ N0, where j is replaced by l as common for orbital angular

momentum.

The common eigenfunctions of (L̂SR)2 and L̂SR
z are the spherical harmonics

Y m
l (θ, ϕ) with the properties

(L̂SR)2Y m
l (θ, ϕ) =l(l + 1)~2Y m

l (θ, ϕ) for l = 0, 1, 2, . . .

L̂SR
z Y m

l (θ, ϕ) =m~Y m
l (θ, ϕ) for m = −l,−l + 1, . . . l

For further reference:

The spherical harmonics Y m
l (θ, ϕ) satisfy the orthogonality∫ 1

−1

d cos θ

∫ 2π

0

dϕ
[
Y m′

l′ (θ, ϕ)
]∗
Y m
l (θ, ϕ) = δl′,lδm′,m

and read:

Y m
l (θ, ϕ) = (−1)(m+|m|)/2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimϕ

with the Legendre polynomials Pm
l (x) defined by

P 0
l (x) =

1

2ll!

dl

dxl
(x2 − 1)l for l = 0, 1, 2, . . .

Pm
l (x) = (1− x2)m/2

dm

dxm
P 0
l (x) for m = 0, 1, 2, . . . l

see, e.g., Arfken and Weber Mathematical Methods for Physicists2. In particular

Y 0
0 (θ, ϕ) =

√
1

4π
Y 0

1 (θ, ϕ) =

√
3

4π
cos θ

Y 1
1 (θ, ϕ) = −

√
3

8π
sin θ eiϕ Y −1

1 (θ, ϕ) =

√
3

8π
sin θ e−iϕ

We find Y m
l (π − θ, ϕ + π) = (−1)lY m

l (θ, ϕ), thus the spherical harmonics are

eigenstates of the inversion r→ −r with eigenvalue (−1)l.

2Abramowitz and Stegun Handbook of Mathematical functions includes a factor (−1)m for

Pm
l (x).
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3.2 Algebra of Angular Momentum

The commutation relations of the angular momentum have their origin in the

transformations of objects under rotations. In an arbitrary ket space, we consider

an infinitesimal rotation around the x-axis with angle δφ. Then, any ket |a〉 is

mapped onto another ket |a′〉 via a linear operator Ûx. As the norm of any ket is

conserved under rotations, Ûx needs to be unitary. For small angles the changes

in the state are proportional to δφ and we can write

Ûx = 1− iδφ

~
Ĵx with an Hermitian operator Ĵx

This generator of rotations around the x-axis, Ĵx, is referred to as a general angular

momentum operator and the corresponding operators Ĵy and Ĵz are analogously

defined. Based on the geometrical rules, how rotations around different axis com-

mute, we find

In an arbitrary ket space the Hermitian angular momentum operators Ĵx, Ĵx, Ĵy

satisfy

[Ĵj, Ĵk] = i~
∑
l

εjklĴl (3.3)

This is the algebra of angular momentum.

Based on the algebra and the fact that Ĵ is Hermitian we can deduce all the other

properties discussed in the rest of this chapter.

We define the square of the angular momentum Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z satisfying

[Ĵ2, Ĵj] = 0 and the shift operators Ĵ± = Ĵx ± iĴy satisfying
(
Ĵ±

)†
= Ĵ∓

Proof of: [Ĵ2, Ĵj] = 0:

Let j = z (for the other components, the proof works similarly). Then we have

[Ĵ2
x + Ĵ2

y + Ĵ2
z , Ĵz] =[Ĵ2

x , Jz] + [Ĵ2
y , Ĵz]

=Ĵx [Ĵx, Ĵz]︸ ︷︷ ︸
=−iĴy

+ [Ĵx, Ĵz]︸ ︷︷ ︸
=−iĴy

Ĵx + Ĵy [Ĵy, Ĵz]︸ ︷︷ ︸
=iĴx

+ [Ĵy, Ĵz]︸ ︷︷ ︸
=iĴx

Ĵy = 0
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3.2.1 Determining the eigenvalues

As [Ĵ2, Ĵz] = 0, there exists a basis of an appropriate ket space consisting of

common eigenstates of the operators Ĵ2 and Ĵz. Let |Ψ〉 be such a normalized

state. In the following we will determine the properties of the corresponding

eigenvalues.

1. The eigenvalues of Ĵ2 are not negative.

Proof: Let Ĵ2|Ψ〉 = α|Ψ〉. Then

α = 〈Ψ|Ĵ2|Ψ〉 = 〈Ψx|Ψx〉+ 〈Ψy|Ψy〉+ 〈Ψz|Ψz〉 ≥ 0

where |Ψi〉 := Ĵi|Ψ〉 and thus 〈Ψi| = 〈Ψ|Ĵi, as Ĵi is hermitian. �

Therefore we can write the eigenvalues as

Ĵ2|Ψ〉 = j(j + 1)~2|Ψ〉 and Ĵz|Ψ〉 = m~|Ψ〉

where we temporarily allow j ∈ R+ and m ∈ R (they will turn out to be

half-integer numbers later).

2. Consider |Ψ+〉 = Ĵ+|Ψ〉. We find

〈Ψ+|Ψ+〉 = 〈Ψ|Ĵ−Ĵ+|Ψ〉 = 〈Ψ|Ĵ2
x + Ĵ2

y + i[Ĵx, Ĵy]|Ψ〉 = 〈Ψ|Ĵ2 − Ĵ2
z − ~Ĵz|Ψ〉

= [j(j + 1)−m2 −m]~2

Thus

(a) |Ψ+〉 = |null〉 ⇔ m = j or m = −j − 1

(b) For m > j or m < −j − 1 we would find 〈Ψ+|Ψ+〉 < 0. Thus −j − 1 ≤
m ≤ j is required.

(c) |Ψ+〉 is also eigenstate of Ĵ2 and Ĵz with the eigenvalues j(j+ 1)~2 and

(m+ 1)~.

Proof:

Ĵ2|Ψ+〉 = Ĵ2Ĵ+|Ψ〉 = Ĵ+Ĵ2|Ψ〉 = Ĵ+j(j + 1)~2|Ψ〉 = j(j + 1)~2|Ψ+〉

Ĵz|Ψ+〉 = Ĵz(Ĵx + iĴy)|Ψ〉 = (Ĵx + iĴy)Ĵz|Ψ〉+
(

[Ĵz, Ĵx] + i[Ĵz, Ĵy)]
)
|Ψ〉

= (Ĵx + iĴy)m~|Ψ〉+ ~
(

iĴy + Ĵx

)
Ψ〉 = (m+ 1)~|Ψ+〉 �
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Now we write |Ψ〉 = |a, j,m〉, where a denotes further quantum numbers, as

there can be several states with equal j and m. Using (a) and (c) we define

for m 6= j

|a, j,m+ 1〉 =
1

~
√
j(j + 1)−m(m+ 1)

Ĵ+|a, j,m〉 (3.4)

The repeated operation of Ĵ+ provides a sequence of states |a, j,m〉, |a, j,m+

1〉, |a, j,m + 2〉, . . .. This sequence stops if m + i+ = j, as in this case

Ĵ+|a, j,m + i+〉 = 0. If the sequence does not terminate one reaches states

contradicting (b) for i > j −m. The necessity to stop provides us with the

condition that m = j − i+ with i+ ∈ N0 holds.

3. Consider |Ψ−〉 = Ĵ−|Ψ〉. Now we find 〈Ψ−|Ψ−〉 = ~2[j(j + 1) − m2 + m]

implying

(a) |Ψ−〉 = |null〉 ⇔ m = −j or m = j + 1

(b) For m < −j or m > j + 1 we would find 〈Ψ−|Ψ−〉 < 0. Thus −j ≤
m ≤ j + 1 holds.

(c) |Ψ−〉 is also eigenstate of Ĵ2 and Ĵz with eigenvalues j(j + 1)~2 and

(m− 1)~.

For m 6= −j we define

|a, j,m− 1〉 =
1

~
√
j(j + 1)−m(m− 1)

Ĵ−|a, j,m〉 (3.5)

Now the repeated operation of Ĵ− provides a sequence of states |a, j,m〉,
|a, j,m− 1〉, |a, j,m− 2〉, . . .. This sequence stops if m− i− = −j holds, as

Ĵ−|a, j,m− i−〉 = 0 in this case. Otherwise the state |a, j,m− i〉 contradicts

(b) for i > −j +m. Thus m = −j + i− holds with i− ∈ N0.

Summary of 2 and 3:

For each common eigenstate |Ψ〉 of Ĵ2 and Ĵz with eigenvalues j(j + 1)~2 and m~
holds:

• There are i+, i− ∈ N0 with m+i+ = j and m−i− = −j. ⇒ 2j = i++i− ∈ N0
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• Repeated operation of Ĵ+ and Ĵ− creates a sequence of states |a, j,m′〉 with

m′ = −j,−j + 1, . . . j, which are all common eigenstates of Ĵ2 and Ĵz.

The results of the points 1, 2, and 3 can be summarized:

The operator Ĵ2 have the eigenvalues j(j + 1)~2 with j = 0, 1
2
, 1, 3

2
, 2, 5

2
, . . .. The

corresponding eigenstates form multiplets Mj of 2j + 1 states |j,m〉 with m =

−j,−j + 1, . . . j, which are eigenstates of Ĵz with the respective eigenvalue m~
I.e.,

Ĵ2|j,m〉 = j(j + 1)~2|j,m〉 and Ĵz|j,m〉 = m~|j,m〉 (3.6)

3.2.2 Implication for systems with rotational symmetry

Now we want to consider the Hamilton-operator in a rotated system. For this

purpose we consider the matrix element 〈Ψ1|Ĥ|Ψ2〉 and rotate all states by ÛR

resulting in 〈Ψ′1|Ĥ|Ψ′2〉 = 〈Ψ1|Û †RĤÛR|Ψ2〉. If the system described by the Hamil-

tonian is rotational invariant, 〈Ψ′1|Ĥ|Ψ′2〉 = 〈Ψ1|Ĥ|Ψ2〉 must hold for arbitrary

states |Ψ1〉, |Ψ2〉. This directly implies the identity Û †RĤÛR = Ĥ. Considering

infinitesimal rotations around the axis j, we have ÛR = 1− iδϕĴj/~+O{δϕ2} and

Û †RĤÛR = Ĥ − i

~
δϕ[Ĥ, Ĵj] +O{δϕ2}

Thus we obtain the important relation:

System is invariant under rotation j-axis⇔ [Ĥ, Ĵj] = 0 (3.7)

which relates the commutation relations of the Hamilton operator with the angular

momentum to the rotational invariance of the system.

Consequently, the Hamilton-operator Ĥ has rotational symmetry around all axis,

if [Ĥ, Ĵi] = 0 for all i = x, y, z and we also find [Ĥ, Ĵ2] = 0. Therefore there exists

a system of common eigenstates for the operators Ĥ, Ĵ2 and Ĵz with respective

eigenvalues E, j(j + 1)~2 and m~. For such an eigenstate |Ψ〉, we can construct

|Ψ±〉 = Ĵ±|Ψ〉 and find Ĥ|Ψ±〉 = ĤĴ±|Ψ〉 = Ĵ±Ĥ|Ψ〉 = Ĵ±E|Ψ〉 = E|Ψ±〉. Thus

|Ψ±〉 are eigenstates of Ĥ with the same energy. Repeating this procedure we find:
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In systems with rotational symmetry around all spatial axis, there is a complete

set of common eigenstates |n, j,m〉 for Ĥ, Ĵ2, and Ĵz. For given j, the multiplets

Mj with m = −j,−j+ 1, . . . j have the identical energy.This provides a (2j+ 1)-

fold degeneracy.

The index n is commonly used to distinguish states with the same j and m, but

different eigenvalues Enj of Ĥ.

Example: The isotropic three-dimensional harmonic oscillator has a non-degenerate

ground state with energy 3~ω/2 and a three-fold degenerate first excited state with

energy 5~ω/2. Which z-components of the angular momentum can be measured

in the respective states?

The isotropic three-dimensional harmonic oscillator has rotational sym-

metry around all spatial axis. Thus a non-degenerate state must belong

to a multipletM0, and the only possible eigenvalues of L̂z is zero. For

the first excited state, the three-fold degeneracy is a M1 multiplet

(without further arguing, we could not exclude the alternative case of

threeM0 multiplets, which accidentally have the same energy, but this

is not the case). Thus one can measure a z-component of −~, 0, or ~
for the angular momentum.

3.2.3 Example: Matrix representation of the angular mo-

mentum operators

Deuteron (a bound state between a neutron and a proton) is a nucleus with spin

1. This means the bound state is three-fold degenerate forming a M1 multiplet.

The three basis states |j = 1,m = 1〉, |j = 1,m = 0〉, and |j = 1,m = −1〉 span a

three-dimensional space of possible states for the deuteron nucleus.

Task: Find the matrix representations for the operators Ĵx, Ĵy, Ĵz, and Ĵ2 in this

space.
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Let us use the following matrix representations of the basis vectors |j = 1,m〉

|1, 1〉 ↔

1

0

0

 |1, 0〉 ↔

0

1

0

 |1,−1〉 ↔

0

0

1


The columns of the respective matrices for an operator result from the action of

the operators on the basis vectors. Let us start with Ĵ−. Using Eq. (3.5) we find

Ĵ−|1, 1〉 =
√

(1 + 1)(1− 1 + 1)~|1, 0〉 =
√

2~|1, 0〉 ↔
√

2

0

1

0


and similarly

Ĵ−|1, 0〉 =
√

2~|1,−1〉 ↔
√

2

0

0

1

 Ĵ−|1,−1〉 = 0↔

0

0

0


Putting the columns together provides the matrix representation of Ĵ−

Ĵ− ↔ ~

 0 0 0√
2 0 0

0
√

2 0


As Ĵ+ = Ĵ†−, the matrix of Ĵ+ is just the transposed (and conjugated) matrix, due

to Eq. (1.10). From the matrices of Ĵ± we get directly the matrix representations

of Ĵx and Ĵy:

Ĵx =
1

2
(Ĵ+ + Ĵ−)↔ ~

2

 0
√

2 0√
2 0

√
2

0
√

2 0


Ĵy =

i

2
(Ĵ− − Ĵ+)↔ i~

2

 0 −
√

2 0√
2 0 −

√
2

0
√

2 0


From the eigenvalue relations Ĵz|1,m〉 = ~m|1,m〉 we get

Ĵz ↔ ~

1 0 0

0 0 0

0 0 −1
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and Ĵ2 is proportional to the identity operator as all three states have the same

eigenvalue j(j + 1)~2 = 2~2.

Ĵ2 ↔ 2~2

1 0 0

0 1 0

0 0 1



3.3 Spin angular momentum

The angular momentum of charged particles is proportional to its magnetic mo-

ment. The Stern-Gerlach experiment reveals two different measurement values

for the z-component of the magnetic moment for silver atoms (and several other

atoms). Also by spectroscopical methods, a double degeneracy of the electron

states, which is lifted by a magnetic field, can be observed in many systems. In

terms of angular momentum, a doublet is a multiplet M1/2 and the data can be

explained by assigning an internal angular momentum with j = 0.5 to the electron.

This property is called electron spin and was originally postulated by Goudsmith

and Uhlenbeck in 1925.

3.3.1 Algebra and matrix representation

The angular momentum operators operators Ĵ referring to the spin are commonly

denoted by Ŝ, which we use in the following. Because spin is an angular momen-

tum, it has the algebra of angular momentum, so everything we discussed in the

previous section can directly be applied to Ŝ. We denote the two possible eigen-

states of Ŝz with eigenvalues ms~ = ±~/2 by | ↑〉 and | ↓〉, respectively. As moti-

vated above, the electron has an internal degree of freedom in a two-dimensional

space spanned by the eigenstates | ↑〉 and | ↓〉 of the operator Ŝz with eigenvalues

mj = ±1/2, repectively. In this basis a general state can be written as a column

(Spinor):

|a〉 = a↑| ↑〉+ a↓| ↓〉 →

(
a↑

a↓

)
(3.8)
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Let Ŝx, Ŝy, Ŝz be the angular momentum operators in spin space. From the general

properties (3.4,3.5, and 3.6) we find

Ŝz| ↑〉 =
1

2
~| ↑〉 Ŝz| ↓〉 =− 1

2
~| ↓〉

Ŝ+| ↑〉 =0 Ŝ+| ↓〉 =~| ↑〉
Ŝ−| ↑〉 =~| ↓〉 Ŝ−| ↓〉 =0

In the basis | ↑〉 and | ↓〉, the spin operators are therefore represented by the

following matrices

Ŝz →
~
2

(
1 0

0 −1

)
Ŝ+ → ~

(
0 1

0 0

)
Ŝ− → ~

(
0 0

1 0

)
As Ŝx = (Ŝ+ + Ŝ−)/2 and Ŝy = (Ŝ+ − Ŝ−)/2i we obtain

the representation of the spin in the space M1/2 is given by

Ŝ = Ŝxex + Ŝyey + Ŝzez → ~
2
σσσ

with the Pauli matrices σx =

(
0 1

1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0

0 −1

)

Note that Ŝ and σσσ are vectors in the conventional three-dimensional real space,

with a direction pointing along the axis of rotation they generate. In contrast the

columns in Eq. (3.8) and the Pauli matrices are elements of the two-dimensional

complex spin space. 3

3.3.2 Spin precession in a magnetic field

Spins with mass m are commonly associated with a magnetic moment as

µ̂µµ = −g e

2me

Ŝ (3.9)

for electrons as well as atoms, ions, and molecules, where the electrons turn out

to be most relevant and

µ̂µµ = g
e

2mp

Ŝ (3.10)

3Here we refrain from writing the vectors Ŝ and σσσ as columns (or rows) with three elements

(which is actually a representation) in order to avoid confusion with the two-dimensional spin

space.
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for nuclei. Here e > 0 is the elementary charge, me the electron mass and mp

the proton mass. The gyromagnetic ratio (or g-factor) depends on the particle:

For electrons the value ge = 2.0023 . . .4 results from relativistic quantum electro-

dynamics (the electron spin is a central feature in the formulation of relativis-

tic quantum mechanics, while it appears more artificially in the nonrelativistic

Schrödinger equation). For atoms, ions, and molecules, the orbital parts of the

electron may also play a role, providing g-factors between one and two. For protons

gp = 5.5883 . . . is relatively large and neutrons have gn = −3.8263 . . . although they

are electrically neutral. Nevertheless, note that the nuclear magnetic moments are

generally three orders of magnitude lower than the electron ones due to the large

proton mass.

The interaction energy of a magnetic moment with a magnetic field is −µµµ ·B. For

an electronic spin we obtain the Schrödinger equation

i~
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 with Ĥ = ge

e

2me

B · Ŝ (3.11)

Using the common representation of the spin in the space M1/2, we find

i~

(
ȧ

ḃ

)
= ge

e~
4me

(
Bz Bx − iBy

Bx + iBy −Bz

)(
a

b

)
If the magnetic field is in the z− direction this equation is uncoupled, and the

solution can easily be written down:(
a(t)

b(t)

)
=

(
a(0)e−iωLt/2

b(0)eiωLt/2

)
with the Larmor frequencyωL =

geeB

2me

At this stage, the choice of ωL is surprising as the time 4π/ω, i.e., two cycles,

is needed to return to the original state. Things are however different for the

expectation values of the main observables:

〈Ψ|Ŝz|Ψ〉 =
(
a∗(t) b∗(t)

)(~/2 0

0 −~/2

)(
a(t)

b(t)

)
=

~
2

(|a(t)|2 − |b(t)|2)

=
~
2

(|a(0)|2 − |b(0)|2)

4This quantity could recently be measured with a remarkable accuracy of 7.6 parts in 1013,

B. Odom et al., Phys. Rev. Lett. 97 030801 (2006)
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Figure 3.2: Precession of the

classical spinning top. The

torque acted on the spinning

top by the gravitation points

in the same direction as µµµ×
Bez for an electronic spin in

a magnetic field pointing up-

wards. (Figure from Xavier

Snelgrove, Wikipedia)

Not surprising, 〈Ψ|Ŝz|Ψ〉 is constant in time as the magnetic field is in the z−
direction. Similarly we obtain

〈Ψ|Ŝx|Ψ〉 =
(
a∗(t) b∗(t)

)( 0 ~/2
~/2 0

)(
a(t)

b(t)

)
=

~
2

(a∗(t)b(t) + a(t)b∗(t))

=~Re{a∗(0)b(0)eiωLt} = ~A cos(ωLt+ α)

for a∗(0)b(0) = Aeiα and finally 〈Ψ|Ŝy|Ψ〉 = ~A sin(ωLt + α). The motion of

〈Ψ|Ŝ|Ψ〉 is called precession. This motion is such that the projection on the x−y−
plane is moving along a circle with constant angular velocity like a spinning top, see

Fig. 3.2. Note, however, that 〈Ψ|Ŝx|Ψ〉 is the expectation value for the measurement

of the x-component of the spin. The actual measurement values are the eigenvalues

of the operator Ŝx, which are ±~/2 (see section 1.2.5).

3.4 Addition of angular momentum

I will start by giving some precise definitions and the main results. These might

seem a bit ”dry” in the beginning, but this will allow you to recognize the important

results in the rest of the chapter.

3.4.1 Sum of angular momenta

Suppose we have two distinct angular momentum operators J1 and J2. These

could for example be
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• A particle’s spin and it’s orbital angular momentum

• Two particles with spins S1 = J1 and S2 = J2

Because J1 and J2 are angular momentum operators, their components J1,2 i are

Hermitian and they satisfy the angular momentum algebra. We assume operators

J1 and J2 each operate in different Hilbert spaces, J1 operates in V1 and J2 operates

in V2.

The sum of angular momenta J1 and J2 is an angular momentum J that operates

in the product space V = V1 ⊗ V2

Ji = J1 ⊗ I + I⊗ J2 , Hermitian, with [Ji, Jj] = iεijk~Jk (3.12)

where I is the identity operator.

Remark that we often (read most of the time) just write J = J1+J2, but remember

that Ji only acts on Vi. This implies that [J1, J2] = [J1 ⊗ I, I⊗ J2] = 0 = [J2, J1].

Therefore

[Ji, Jj] = [J1i ⊗ I + I⊗ J2i, J1j ⊗ I + I⊗ J2j] (3.13)

= [J1i ⊗ I, J1j ⊗ I] + [I⊗ J2i, I⊗ J2j] (3.14)

= [J1i, J1j]⊗ I + I⊗ [J2i, J2j] (3.15)

= iεijk~J1k ⊗ I + I⊗ iεijk~J2k (3.16)

= iεijk~ (J1k ⊗ I + I⊗ J2k) (3.17)

= iεijk~Jk (3.18)

Now one obvious complete set of commuting operators (CSCO) for this system is{
H, J2

1 , J1z, J
2
2 , J2z

}
, which is just an extension of what we did before, but now

taking into account both angular momenta (this turns out to be not quite true,

but we’ll see this when studying spin-orbit coupling). We now want to find a

complete set of commuting observables in which we can include the total angular

momentum operator. Now note that

J2 = J2
1 + J2

2 + 2J1 · J2 (3.19)

= J2
1 + J2

2 + J1+J2− + J1−J2+ + 2J1zJ2z (3.20)
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The last term on the right hand side in (3.19) can be written like this because we

know that J1 and J2 commute, and in (3.20) we used properties of the step/shift

operators that were discussed earlier in this chapter. We see that there now is a

coupling term between J1 and J2 and this implies that if we want to have J2 in

our CSCO, we can not have J1z and J2z in it anymore, because [J1 · J2, J1,2 z] 6= 0.

Because generally for angular momentum we have that [J2, Ji] = 0, we see here that

J2
1 and J2

2 do still commute with J2. So we can start a CSCO with
{
J2, J2

1 , J
2
2

}
,

but we will need one more angular momentum operator. 5 Because for general

angular momentum operators we have [Jz, J±] = ±~J± it’s easy to show that total

angular momentum operator Jz must be the fourth angular momentum operator

for our CSCO.

This means we have not two distinct bases that span the same vector space V .

The vectors that span these two bases will be written |j1m1j2m2〉 and |jm〉 (short

for |jmj1j2〉). The coefficients that determine the passage between these two bases

are called the Clebsch-Gordon coefficients,

|j m〉 =

j1∑
m1=−j1

j2∑
m2=−j2

〈j1m1 j2m2|jm〉|j1m1 j2m2〉 (3.21)

(3.22)

where the Clebsch-Gordon coefficients are CB(j,m, j1, j2,m1,m2) = 〈j1m1 j2m2|jm〉.

The quantum number j of total angular momentum obeys

j = j1 ⊗ j2 = j1 + j2 ⊕ j1 + j2 − 1⊕ · · · ⊕ |j1 − j2| (3.23)

meaning that taking the product space of two angular momenta j1 and j2 gives rise

to different multiplets with total angular moment j. The total magnetic moment

m must obey

m = m1 +m2 (3.24)

5 Note that here we did not include H, our Hamiltonian in the CSCO, but it must actually

be there to determine the principle quantum number n. For a system with a central potential

this number’s given by solving the radial equation, as we’ve seen before. Here we concentrate on

angular momentum, but when including coupling terms between J1 and J2 in the Hamiltonian

we must take a closer look at the CSCO again.
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this is quite easy to see as the eigenvalues for J1z and J2z are linear. It’s important

to note that the total angular momentum j 6= j1 + j2 (there’s only one multiplet

that has this property, but there are other multiplets with other j).

Example: for j1 = 3
2

and j2 = 1
2
, one has j ∈

{
5
2
, 3

2
, 1

2

}
.

3.4.2 Two spin one-half particles

The spin operator S = (Sx, Sy, Sz) is Hermitian and satisfies the angular mo-

mentum algebra. In fact, there are only two types of angular momentum, orbital

angular momentum and spin angular momentum. Orbital angular momentum acts

on spatial degrees of freedom, whereas spin angular momentum only acts on spin

degrees of freedom. Spin angular momentum is said to be an intrinsic property of

particles (Fermions in fact). Here we will write eigenvalues equations as

S2|s, m〉 = ~2s(s+ 1)|s, m〉 =
3

4
~2|1

2
, ±1

2
〉 (3.25)

Sz|s, m〉 = ~|s, m〉 = ±~
2
|1
2
, ±1

2
〉 (3.26)

with s = 1
2

and m = ±1
2

(spin up +, spin down −). 6

Eigenbasis for total angular momentum

For two spin-1
2

particles, the product space V1 ⊗ V2 is four dimensional, spanned

by the vectors

|+〉1 ⊗ |+〉2, |+〉1 ⊗ |−〉2, |−〉1 ⊗ |+〉2, |−〉1 ⊗ |−〉2, (3.27)

Note that I here labeled particle one and particle two, so I suppose that I know

which is which. This is of course not true in general, but we here keep the con-

vention that the left hand vector space is for particle one, the right vector space

for particle two, even if I don’t always specify the labels. The total spin angular

momentum operator is written

S = S1 + S2 = S1 ⊗ I + I⊗ S2 . (3.28)

6 Note that I often use shorter but equivalent notation: | 12
1
2 〉 = | ↑〉 = |+〉 and | 12 −

1
2 〉 = | ↓

〉 = |−〉.
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The first important question to answer in order to understand what’s happening

is the following; What are the eigenvalues of Sz = S1z + S2z? We see that

Sz(|
1

2
,

1

2
〉 ⊗ |1

2
,

1

2
〉) = S1z|

1

2
,

1

2
〉 ⊗ |1

2
,

1

2
〉+ |1

2
,

1

2
〉 ⊗ S2z|

1

2
,

1

2
〉

= ~(|1
2
,

1

2
〉 ⊗ |1

2
,

1

2
〉), so m = 1 (3.29)

Sz(|
1

2
,

1

2
〉 ⊗ |1

2
, −1

2
〉) = S1z|

1

2
,

1

2
〉 ⊗ |1

2
, −1

2
〉+ |1

2
,

1

2
〉 ⊗ S2z|

1

2
, −1

2
〉

= 0 so m = 0 (3.30)

Sz(|
1

2
, −1

2
〉 ⊗ |1

2
,

1

2
〉) = S1z|

1

2
, −1

2
〉 ⊗ |1

2
,

1

2
〉+ |1

2
, −1

2
〉 ⊗ S2z|

1

2
,

1

2
〉

= 0, so m = 0 (3.31)

Sz(|
1

2
, −1

2
〉 ⊗ |1

2
, −1

2
〉) = S1z|

1

2
, −1

2
〉 ⊗ |1

2
, −1

2
〉+ |1

2
, −1

2
〉 ⊗ S2z|

1

2
, −1

2
〉

= −~(|1
2
,

1

2
〉 ⊗ |1

2
,

1

2
〉), so m = −1 (3.32)

We see that simply m = m1 +m2, as expected from the fact that the eigenvalues of

Sz are linear in m. Because total angular momentum satisfies all general properties

of angular momentum we have here that m ∈ [[−j, j]], so we have at least one

multiplet with j = 1, meaning that m ∈ {1, 0,−1}, so this gives us a triplet. Our

product space is spanned by four vectors, so there must be one more vector to

find, this is a singlet state with j = 0 and m = 0. We will write these states using

the usual notation for angular momentum as

{|1, 1〉, |1, 0〉, |1, −1〉} Triplet (3.33)

{|0, 0〉} Singlet (3.34)

It can be seen, as given in the previous paragraph, that one can write 1
2
⊗ 1

2
= 1⊕0.

In terms of number of states one could write 2×2 = 3+1, meaning that two vector

spaces of dimension 2 each give rise to two multiplets, one of multiplicity 3 (triplet)

and one of multiplicity one (singlet). The thing to do now is to find how these

two basis are related. One can easily convince oneself that the states with largest
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magnetic moments |1, 1〉 and |1, −1〉 are just,

|1, 1〉 = |1
2
,

1

2
〉 ⊗ |1

2
,

1

2
〉 = |+〉 ⊗ |+〉 , (3.35)

|1, −1〉 = |1
2
, −1

2
〉 ⊗ |1

2
, −1

2
〉 = |−〉 ⊗ |−〉 , (3.36)

(3.37)

The third state of the triplet and the singlet state can be expected to be some

linear combination of the two states that are left over. We thus have do determine

|1, 0〉 = a|1
2
,

1

2
〉 ⊗ |1

2
, −1

2
〉+ b|1

2
, −1

2
〉 ⊗ |1

2
,

1

2
〉 (3.38)

|0, 0〉 = c|1
2
,

1

2
〉 ⊗ |1

2
, −1

2
〉+ d|1

2
, −1

2
〉 ⊗ |1

2
,

1

2
〉 (3.39)

with the condition that |1, 0〉 and |0, 0〉 are orthogonal. We can find |1, 0〉 easily

by operating on |1, 1〉 with the step/shift operator, satisfying

S±|s, m〉 = ~
√
s(s+ 1)−m(m± 1)|s, m± 1〉 . (3.40)

This gives us

S−|1, 1〉 = ~
√

1(1 + 1)− 1(1− 1)|1, 0〉 =
√

2~|1, 0〉 (3.41)

= S−(|1
2
,

1

2
〉 ⊗ |1

2
,

1

2
〉) (3.42)

= S1−|
1

2
,

1

2
〉 ⊗ |1

2
,

1

2
〉+ |1

2
,

1

2
〉 ⊗ S2−|

1

2
,

1

2
〉 (3.43)

= ~(|1
2
, −1

2
〉 ⊗ |1

2
,

1

2
〉+ |1

2
,

1

2
〉 ⊗ |1

2
, −1

2
〉) (3.44)

We conclude that

|1, 0〉 =
1√
2

(
|1
2
, −1

2
〉 ⊗ |1

2
,

1

2
〉+ |1

2
,

1

2
〉 ⊗ |1

2
, −1

2
〉
)

(3.45)

And because |0, 0〉 has to be orthogonal it can be written

|0, 0〉 =
1√
2

(
−|1

2
, −1

2
〉 ⊗ |1

2
,

1

2
〉+ |1

2
,

1

2
〉 ⊗ |1

2
, −1

2
〉
)

(3.46)

where we used the same sign convention as in the Clebsch-Gordon tables. The

question now is if the states we just found are indeed eigenstates of the operator
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S2. We verified in class that |0, 0〉 is indeed eigenstate with eigenvalue zero, and

it’s a good exercise to do it yourself for the triplet states. To do this one has to

use the identity

S2 = S2
1 + S2

2 + 2S1 · S2 (3.47)

= S2
1 + S2

2 + 2(S1xS2x + S1yS2y + S1zS2z) (3.48)

= S2
1 + S2

2 + S1+S2− + S1−S2+ + 2S1zS2z (3.49)

Now what if our two particles are indistinguishable? Well, the spin statistics

theorem loosely tells us the following:

Under the exchange of indistinguishable particles the wave function must be:

• symmetric for integer spin particles (bosons)

• anti-symmetric for half-spin particles (fermions)

We will not give a proof of this theorem here, but we’ll work with to analyze our

singlet and triplet spin-1
2

states. We have to remember that in general we can

write the wave function for Fermions as

φ(r1, s1; r2, s2) = −φ(r2, s2; r1, s1) (3.50)

so there is a spatial as well as a spin dependence. If we exchange particle one

and two in the triplet spin states, it can be seen we get back exactly the same

wave function. This means the spatial part of the wave function for the triplet

states must be anti-symmetric in order for these states to obey Fermi statistics.

It was shown in class that as a consequence the spins in the triplet states can not

occupy the same orbital or the same space. This means that, moving in different

orbitals, these states have much lower Coulomb energy that the singlet state (that

is anti-symmetric in spin space, and symmetric in real space). As stated by one

of Hund’s rules, the higher the multiplicity, the lower the energy of the states in

that multiplet.

Coupling of Two Spins, the Product Space

In order to become acquainted with the addition of angular momenta we consider

two spin-1
2
- particles. Such a physical system is positronium, which consists of one
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electron (index e) and one positron (index p in this section). If this ”atom” is in

its ground state the particles are in a relative s− state and do not carry orbital

angular momentum. The total angular momentum of the system is given by the

two spin operators

Ŝ = Ŝe + Ŝp (3.51)

Formally this operator acts on the product space of electron and positron spin kets.

Generally the product space is a new space of kets, which can be constructed as

follows: One chooses a basis for each space. Then the product space is spanned by a

basis consisting of all pairings between the basis kets of both spaces. Consequently

the dimensions of the product space is the product of the dimension of both spaces.

In our case of positronium any ket of the product space (with index ep) can be

written as

|Ψ〉ep = α1 | ↑〉e ⊗ | ↑〉p︸ ︷︷ ︸
=|a1〉ep

+α2 | ↑〉e ⊗ | ↓〉p︸ ︷︷ ︸
=|a2〉ep

+α3 | ↓〉e ⊗ | ↑〉p︸ ︷︷ ︸
=|a3〉ep

+α4 | ↓〉e ⊗ | ↓〉p︸ ︷︷ ︸
=|a4〉ep

(3.52)

where the ⊗ is the common symbol for this kind of combination. Note that the

order really matters, as on the left-hand side of ⊗ we have the electron state, while

the positron state is located on the right-hand side.

Any type of spin-spin interaction causes the coupling between the spins by an

effective Hamiltonian operating on both spin spaces simultaneously. Motivated by

the classical interaction between magnetic moments, a typical Hamiltonian is

Ĥ =
U

~2
Ŝe · Ŝp =

U

~2
(ŜexŜpx + ŜeyŜpy + ŜezŜpz) (3.53)

where U > 0 if the two particles have opposite charge. Now we want to use the

matrix representation with the basis defined in Eq. (3.52). We have to evaluate

matrix elements such as

〈ai|ŜexŜpx
(
| ↑〉e ⊗ | ↑〉p

)
=

~
2
〈ai|Ŝex

(
| ↑〉e ⊗ | ↓〉p

)
=

~2

4
〈ai|
(
↓〉e ⊗ | ↓〉p

)
=

~2

4
δi4

In this way we obtain the first column of the representation

ŜexŜpx →
~2

4


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
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and the other columns are obtained analogously. Similarly we find

ŜeyŜpy →
~2

4


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 ŜezŜpz →
~2

4


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


This provides the stationary Schrödinger equation Ĥ|Ψ〉 = E|Ψ〉 in matrix repre-

sentation

U

4


1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1



α1

α2

α3

α4

 = E


α1

α2

α3

α4


Thus the eigenvalues Ei and eigenstates |Ψi〉 are obtained by matrix diagonaliza-

tion. We find a threefold eigenvalue E1 = U/4 with corresponding eigenstates

|1, 1〉 =| ↑〉e ⊗ | ↑〉p

|1, 0〉 =
1√
2

(
| ↑〉e ⊗ | ↓〉p + | ↓〉e ⊗ | ↑〉p

)
|1,−1〉 =| ↓〉e ⊗ | ↓〉p

(3.54)

and a single eigenvalue E0 = −3U/4 with corresponding eigenstate

|0, 0〉 =
1√
2

(| ↑〉e ⊗ | ↓〉p − | ↓〉e ⊗ | ↑〉p) (3.55)

These states |j,mj〉 are actually eigenstates of the total angular momentum op-

erators Ŝ2 and Ŝz as defined in Eq. (3.51) with eigenvalues j(j + 1)~2 and mj~,

respectively, as direct evaluation shows (see also exercises). Thus the structure of

the solutions can be seen as a consequence, that the Hamiltonian (3.53) commutes

with the total angular momentum (i.e. [Ĥ, Ŝi] = 0 for i = x, y, z, as shown in

the exercises). As discussed above, the commutation relations have their origin

in spatial symmetry and thus they reflect the fact that the Hamiltonian for the

positronium atom has to be invariant under spatial rotations.

Some physical background: The singlet with total spin 0 is called para-positronium

and is the ground state. It decays with a mean lifetime of 125 ps into two photons

flying in opposite direction of 511 keV each. (This pair of photons is actually
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used in positron emission tomography). The triplet with spin 1 is called ortho-

positronium and is an excited state about 0.84 meV above the ground state7.

Due to its internal symmetry it cannot decay into two photons, and the required

three-photon process provides a significantly longer lifetime of 142 ns.8

3.4.3 Spin-Orbit Coupling and Fine Structure

Now we consider both the orbital- and spin-degree of freedom of an electron to-

gether. (The results obtained here can be easily generalized to the coupling of

other kinds of angular momentum.) Thus we have to work in the product space

between the spin-1/2 kets and the spatial kets, which is spanned by the basis ele-

ments | ↑〉 ⊗ |r〉, | ↓〉 ⊗ |r〉, where r runs over the entire space. The representation

of an arbitrary quantum state in this basis is the spinor

|Ψ〉 →

(
Ψ↑(r)

Ψ↓(r)

)
(3.56)

In the following we want to classify the possible eigenstate of angular momentum

in this product space.

Eigenstates of total angular momentum

As the spin Ŝ and orbital angular momentum L̂ act in different ket spaces we find

[L̂i, Ŝj] = 0 for all i, j = x, y, z. Thus the operators L̂2, L̂z, Ŝ2 and Sz all commute

with each other and we can identify a basis, which consists of eigenstates of all

these four operators. According to their eigenvalues, these basis elements can be

denominated as |a, l,ml, s,ms〉1, where a is lifting any remaining degeneracies.

System 1: |a, l,ml, s,ms〉1 are eigenstates of L̂2, L̂z, Ŝ2, and Sz with

eigenvalues l(l + 1)~2, ml~, s(s+ 1)~2, and ms~, respectively.

Here we have ml ∈ {−l,−l + 1, . . . l} and ms ∈ {−s,−s+ 1, . . . s}. In our case of

an electron s = 1/2 is fixed, (but we keep the index in order to be more general)

7according to T. Yamazaki, Phys. Rev. Lett. 108, 253401 (2012)
8Lifetimes after A. Badertscher et al. Phys. Rev. D 75, 032004 (2007)
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and an example for a spinor representation is

|a, l = 2,ml = 1, s = 1/2,ms = 1/2〉1 →

(
Y 1

2 (θ, ϕ)fa,l(r)

0

)
where fa,l(r) is some radial function.

The total angular momentum is the sum of the spin and orbital part Ĵ = L̂+Ŝ and

satisfies the general commutation relations for angular momenta as can be easily

checked in the exercises. Thus one can construct a basis with common eigenstates

of Ĵ2 and Ĵz. For the square of the total angular momentum we find

Ĵ2 = L̂2 + Ŝ2 + 2L̂ · Ŝ = L̂2 + Ŝ2 + 2L̂zŜz + L̂+Ŝ− + L̂−Ŝ+ (3.57)

As L̂2 and Ŝ2 both commute with L̂z and Ŝz, we obtain the commutation relations

[Ĵ2, L̂z] =2
∑
n

[L̂n, L̂z]Ŝn = 2i~(−L̂yŜx + L̂xŜy) (3.58)

[Ĵ2, Ŝz] =2
∑
n

L̂n · [Ŝn, Ŝz] = 2i~(L̂yŜx − L̂xŜy) (3.59)

Therefore it is not possible to find a common system of eigenstates of Ĵ2 and L̂z

or of Ĵ2 and Ŝz. Consequently, the states of system 1 cannot be chosen to be

eigenstates of Ĵ2 as well (except for special cases when l = 0 or s = 0).

However we find:

[Ĵ2, L̂2] =2
∑
n

[L̂n, L̂
2]Ŝn = 0 , [Ĵz, L̂

2] =0 (3.60)

[Ĵ2, Ŝ2] =2
∑
n

L̂n[Ŝn, Ŝ
2] = 0 , [Ĵz, Ŝ

2] =0 (3.61)

Together with the relation [Ĵz, Ĵ
2] = 0 we find, that there exists a common system

of eigenstates of the operators Ĵ2, Ĵz, L̂
2 and Ŝ2 namely

System 2: |a, j,mj, l, s〉2 are common eigenstates of Ĵ2, Ĵz, L̂2, and Ŝ2 with

eigenvalues j(j + 1)~2, mj~, l(l + 1)~2, and s(s+ 1)~2, respectively

As system 1 and system 2 span the same ket space, it must be possible to express

the basis states of one system as linear combination of the basis of the other system.

The change in bases is given by

|j,mj, l, s〉2 =
l∑

ml=−l

s∑
ms=−s

C(j,mj;ml,ms; l, s)|l,ml, s,ms〉1
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where the numbers C(j,mj;ml,ms; l, s) are the Clebsch-Gordan coefficients.9 In

particular C(j,mj;ml,ms; l, s) = 0 holds, if mj 6= ml +ms as Ĵz = L̂z + Ŝz.

Example: Determine the Clebsch-Gordan coefficients of the state

|Ψ〉 =
∣∣j = 1

2
,mj = 1

2
, l = 1, s = 1

2

〉
2
.

As ml +ms = 1/2 we have to consider the two states

|0〉 =

∣∣∣∣l = 1,ml = 0, s =
1

2
,ms =

1

2

〉
1

|1〉 =

∣∣∣∣l = 1,ml = 1, s =
1

2
,ms = −1

2

〉
1

of system 1 and write |Ψ〉 = a0|0〉 + a1|1〉. According to its definition

Ĵ2|Ψ〉 = 3
4
~2|Ψ〉. Using Eqs. (3.57,3.4,3.5) we find

3

4
(a0|0〉+ a1|1〉) =

1

~2
(L̂2 + Ŝ2 + 2L̂zŜz + L̂+Ŝ− + L̂−Ŝ+)(a0|0〉+ a1|1〉)

=a0

[(
2 +

3

4

)
|0〉+

√
2|1〉

]
+ a1

[(
2 +

3

4
− 1

)
|1〉+

√
2|0〉

]
Comparing the coefficients of |0〉 and |1〉 provides

3

4
a0 =

(
2 +

3

4

)
a0 +

√
2a1 and

3

4
a1 =

(
1 +

3

4

)
a1 +

√
2a0

with the solution a1 = −
√

2a0. Normalizing |a0|2 + |a1|2 = 1 provides

a0 =C(j = 1/2,mj = 1/2;ml = 0,ms = 1/2; l = 1, s = 1) = − 1√
3

a1 =C(j = 1/2,mj = 1/2;ml = 1,ms = −1/2; l = 1, s = 1) =

√
2

3

In spinor representation we can write∣∣∣∣j =
1

2
,mj =

1

2
, l = 1, s =

1

2

〉
2

→ 1√
3

(
−Y 0

1 (θ, ϕ)√
2Y 1

1 (θ, ϕ)

)

9See, e.g., http://pdg.lbl.gov/2011/reviews/rpp2011-rev-clebsch-gordan-coefs.pdf

http://pdg.lbl.gov/2011/reviews/rpp2011-rev-clebsch-gordan-coefs.pdf
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Fine structure of the hydrogen atom

For the hydrogen atom the main ingredient of the Hamiltonian is the Coulomb

potential of the proton, which does not depend on spin. Thus the corresponding

Hamilton operator is diagonal in spin space and the energy eigenvalues 13.6 eV/n2

only depend on the principal quantum number n together with the restriction

l < n. In this case we can use either system 1 or system 2 for a classification of

the states.

As both spin and orbital angular momentum are related to a magnetic moment,

the interaction between these moments provides the Spin-orbit-interaction

ĤSO = f(r)L̂ · Ŝ =
1

2
f(r)

(
Ĵ2 − L̂2 − Ŝ2

)
(3.62)

A relativistic calculation (e.g., Bransden and Joachain, Quantum Mechanics, chap-

ter 15.6) provides for a central potential:

f(r) =
1

2m2
ec

2

1

r

∂V

∂r

Together with Eqs. (3.58,3.59) it follows

[ĤSO, L̂z] = if(r)~(−L̂yŜx + L̂xŜy) and [ĤSO, Ŝz] = if(r)~(L̂yŜx − L̂xŜy)

Thus, there is no common set of eigenstates of ĤSO and L̂z or Ŝz, and neither ml

nor ms are good quantum numbers to describe the energy levels of the hydrogen

atom if spin-orbit interaction is considered, i.e., our system 1 is of no use. In

contrast we find with Eqs. (3.60,3.61):

[ĤSO, Ĵ
2] = 0, [ĤSO, Ĵz] = 0, [ĤSO, L̂

2] = 0, and [ĤSO, Ŝ
2] = 0

Thus there exists a common system of eigenstates of the operators ĤSO, Ĵ2, Ĵz,

L̂2 and Ŝ2. We conclude that system 2 with the quantum numbers j, mj, l and

s is appropriate to describe the energy levels of the hydrogen atom if spin-orbit

interaction is considered. Due to symmetry, these provide multiplets, with respect

to the index mj. Thus the levels can be classified by n, l and j in the form

nlj, called spectroscopic notation, where l is replaced by the letters s,p,d,f for

l = 0, 1, 2, 3, respectively.

How are the energy levels changed by the spin-orbit interaction?
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ground state n = 1; l = 0; s = 1/2: This only allows j = 1/2. As j(j + 1) −
l(l + 1)− s(s+ 1) = 0 in Eq. (3.62) the spin orbit interaction vanishes

→ No change in energy for ground state 1s1/2

first exited state n = 2; l = 0, 1; s = 1/2. Possible states in system 2 are:

• |j = 1
2
,mj = ±1

2
, l = 0, s = 1

2
〉2: provides j(j+1)−l(l+1)−s(s+1) = 0

→ No change in energy for 2s1/2

• |j = 1
2
,mj = ±1

2
, l = 1, s = 1

2
〉2: Then we find j(j+ 1)− l(l+ 1)− s(s+

1) = −2

→ reduction in energy for 2p1/2

• |j = 3
2
,mj = ±1

2
,±3

2
, l = 1, s = 1

2
〉2: Then we find j(j + 1)− l(l + 1)−

s(s+ 1) = 1

→ increase in energy for 2p3/2

Spin-orbit interaction lifts the degeneracy between states with different j and l

of the hydrogen atom, which is called fine structure

In addition, further relativistic terms and the Lamb shift have to be considered for

a quantitative description. However the classification of the states remains valid,

as it is a consequence of symmetry10. We could make rather general statements

and avoided the effort of matrix diagonalization as we implied the correct symme-

try. Finally, note that the energy shifts by the fine structure are of the order of

41µeV (shift between 2p1/2 and 2p3/2
11) and thus significantly smaller than the

energy difference between the n = 1 and n = 2 state of approximately 10 eV. The

hyperfine-structure due to the coupling to the magnetic moment of the proton is

even smaller (the splitting between the singlet and the triplet in the ground states

is 6 µeV12. This is much smaller than for the case of positronium (Sec. 3.4.2) as

the magnetic moment of the proton is much smaller than the one of the positron

due to the substantially higher mass.

10The ordering of levels is also preserved, albeit only a little difference between 2s1/2 and 2p1/2,

called Lamb shift, remains. See, e.g., the textbook of Bransden and Joachain
11According to E.W. Hagley and F.M. Pipkin, Phys. Rev. Lett. 72, 1172 (1994)
12according to D.J. Griffiths, Am. J. Phys 50, 698 (1982), where a simple quantitative calcu-

lation is performed
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Chapter 4

Magnetic Fields

Up to now we considered quantum systems which correspond to classical systems

with a mechanical potential V (r) as well as the spin, where no classical analog

exists. Now we focus on electromagnetic fields, where the Lorentz force

F = qv ×B + qE (4.1)

on a particle with charge q due to the electric field E(r, t) and the magnetic field

B(r, t) is not the gradient of any potential V (r).

4.1 Hamilton Operator in an Electromagnetic Field

4.1.1 The electromagnetic potentials

The homogeneous Maxwell equations (the equations, which do not contain charges

or currents) read

∇ ·B(r, t) = 0 and ∇× E(r, t) = − ∂

∂t
B(r, t)

The first one implies the existence of a field A(r, t) (called vector potential),

with B(r, t) = ∇ × A(r, t). Inserting this into the second equation provides

∇ × (E + ∂A/∂t) = 0. This in turn implies the existence of function φ(r, t)

(called scalar potential) with E + ∂A/∂t = −∇φ(r, t). In summary, the electric
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and magnetic field can be expressed by potentials as

E(r, t) = −∇φ(r, t)− ∂A(r, t)

∂t
B(r, t) = ∇×A(r, t) (4.2)

which satisfies the two homogeneous Maxwell equations. This generalizes the (pos-

sibly better known) stationary case with time-independent fields and potentials,

where E(r) = −∇φ(r) and B(r) = ∇×A(r).

For example, the electromagnetic wave

E(r, t) = E0ex cos(kz − ωt) B(r, t) =
kE0

ω
ey cos(kz − ωt)

can be expressed by the potentials

A(r, t) =
1

ω
E0ex sin(kz − ωt) φ(r, t) = 0

Note that the potentials are not unique as the substitution

A′(r, t) = A(r, t) +∇F (r, t) φ′(r, t) = φ(r, t)− ∂

∂t
F (r, t) (4.3)

provides identical fields for arbitrary scalar functions F (r, t), which is called a

gauge transformation. This provides the freedom to specify ∇ ·A(r, t). Common

choices are ∇ · A(r, t) = 0 (Coulomb gauge) and ∇ · A(r, t) = −c−2∂φ(r, t)/∂t

(Lorenz gauge).

4.1.2 Main result

While the potentials A(r, t), φ(r, t) are useful (but not necessary) in classical elec-

trodynamics, they become of central importance in the formulation of the quantum

theory for particles interacting with electromagnetic fields. The main concept is

summarized as follows:
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The Hamilton operator for particles with mass m and charge q reads

Ĥ =
(p̂− qA(r̂, t))2

2m
+ qφ(r̂, t) (4.4)

where the operators p̂ and r̂ satisfy the canonical commutation relations

[p̂i, r̂j] =
~
i
δij [p̂i, p̂j] = 0 [r̂i, r̂j] = 0 (4.5)

In spatial representation, the (canonical) momentum operator p̂ becomes ~
i
∇ as

usual. However it differs from the kinetic momentum

p̂kin = p̂− qA(r̂, t) providing the average velocity 〈v〉 =
〈Ψ|p̂kin|Ψ〉

m
(4.6)

This structure of the Hamilton operator can be deduced in the context of analyt-

ical mechanics by considering the classical Hamilton function1. As a less formal

alternative, we show in Sec. 4.1.3, that the Hamiltonian provides the same equa-

tions of motion for the expectation value of the position operator as the classical

theory and thus makes sense.

In this context it is important to notice, that the components of p̂kin do not satisfy

the canonical commutation relations. Instead we find the important relation

[p̂kin
i , p̂kin

j ] =[p̂i − qAi(r̂, t), p̂j − qAj(r̂, t)] = −q[p̂i, Aj(r̂, t)]− q[Ai(r̂, t), p̂j]

=i~q
(
∂Aj(r̂, t)

∂ri
− ∂Ai(r̂, t)

∂rj

)
= i~qεijkBk(r̂, t)

(4.7)

where we used the relation

[p̂j, f(r̂)] =
~
i

∂f(r̂)

∂rj
(4.8)

and ∇×A = B from Eq. (4.2), where εijk is the Levi-Civita tensor.

1See, http://www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/quantMagnetField.

pdf for a short outline.

http://www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/quantMagnetField.pdf
http://www.teorfys.lu.se/staff/Andreas.Wacker/Scripts/quantMagnetField.pdf
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4.1.3 Justification of the Hamiltonian∗

In order to justify the choice (4.4) for the Hamiltonian in the presence of an

electromagnetic field we consider the time evolution of the average position.

d

dt
〈Ψ|r̂|Ψ〉 =

i

~
〈Ψ|

[(
(p̂− qA(r̂, t))2

2m
+ qφ(r̂, t)

)
, r̂

]
|Ψ〉 = 〈Ψ| p̂− qA(r̂, t)

m
|Ψ〉

in agreement with Eq. (4.6).

Now we evaluate the expectation value for the acceleration times the particle mass,

which should correspond to the classical Lorentz force (4.1).

m
d2

dt2
〈Ψ|r̂|Ψ〉 =

d

dt
〈Ψ|p̂kin|Ψ〉 =

i

~
〈Ψ|[Ĥ, p̂kin]|Ψ〉+ 〈Ψ|

(
∂

∂t
p̂kin

)
|Ψ〉

=
i

~
〈Ψ|

[
(p̂kin)2

2m
, p̂kin

]
|Ψ〉︸ ︷︷ ︸

Term I

+
i

~
〈Ψ|

[
qφ(r̂, t), p̂kin

]
|Ψ〉︸ ︷︷ ︸

Term II

−q〈Ψ| ∂
∂t

A(r̂, t)|Ψ〉︸ ︷︷ ︸
Term III

The commutator in Term 2 becomes just i~q ∂φ(r̂,t)
∂r

using Eq. (??). Comparing

with Eq. (4.2) we identify

Terms II+III = 〈Ψ|qE(r̂, t)|Ψ〉

which is just the electric field part of the Lorentz force (4.1).

In term I we consider[
(p̂kin
i )2, p̂kin

j ej
]

=
(
p̂kin
i [p̂kin

i , p̂kin
j ] + [p̂kin

i , p̂kin
j ]p̂kin

i

)
ej

=i~qεijk
(
p̂kin
i Bk(r̂, t) +Bk(r̂, t)p̂

kin
i

)
ej

where Eq. (4.7) was used. This can be written as a cross product we obtain

Term I = q〈Ψ|
(

p̂kin

2m
×B(r̂, t)−B(r̂, t)× p̂kin

2m

)
|Ψ〉

which is a symmetrized version of the magnetic field part of the Lorentz force (4.1).

Together we find

m
d2

dt2
〈Ψ|r̂|Ψ〉 = q〈Ψ|

(
p̂kin

2m
×B(r̂, t)−B(r̂, t)× p̂kin

2m

)
|Ψ〉+ q〈Ψ|E(r̂, t)|Ψ〉
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which corresponds to the expectation value of the classical equation of motion.2

This general correspondence between classical and quantum physics is called Ehren-

fest theorem.

4.2 Zeeman Effect

A constant magnetic field B can be described via the vector potential

A(r) =
1

2
B× r (4.9)

Including a static electric potential φ the Hamiltonian (4.4) reads

Ĥ =
(p̂2 − qA(r̂) · p̂− qp̂ ·A(r̂) + q2A2(r̂)

2m
+ qφ(r̂)

The choice (4.9) of the vector potential, satisfies ∇·A(r) = 0 (also called Coulomb

gauge). Then we find with help of Eq. (4.8)

p̂ ·A(r̂)−A(r̂) · p̂ =
∑
j

[p̂j, Aj(r̂)] =
~
i

∑
j

∂

∂rj
Aj(r̂) =

~
i
∇ ·A(r̂) = 0

Thus we can write

−qA(r̂) · p̂− qp̂ ·A(r̂) = −2qA(r̂) · p̂ = −q(B× r̂) · p̂ = −(r̂× p̂) ·B = −L̂ ·B

Furthermore we have

A2(r̂) =
1

4
(B× r̂) · (B× r̂) =

1

4
[r̂× (B× r̂)] ·B

=
1

4

[
r̂2B− (B · r̂)r̂

]
·B =

1

4
B2r̂2

⊥

where r̂⊥is the component of r̂ which is perpendicular to B.

In summary we find the Hamiltonian for a charged particle in a constant magnetic

field and a static electric potential:

Ĥ =
p̂2

2m
+ qφ(r̂)− q

2m
B · L̂ +

q2B2

8m
r̂2
⊥ (4.10)

2Note however, that on the right-hand side, the expectation value is taken over the fields and

not directly over the spatial operator. Thus these does not provide a closed system of equations,

in contrast to the classical case!
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For atoms the last term is usually negligible. For the typical atomic length scale

r̂2
⊥ ∼ 1Å2, we obtain about 0.2neV × (B/T)2, which is very small. (Note that

magnetic fields of more than a few Tesla require substantial experimental effort.)

Lets now consider the hydrogen atom and φ(r̂) is the Coulomb potential of the

proton. Then the kets |n, l,ml〉 are the well-known eigenstates of p̂2

2m
+ qφ(r̂) with

energy En. Adding a magnetic field in z-direction provides the additional term
e

2me
B ·L̂z which splits each multiplet with fixed l into 2l+1 lines with energy shifts

e~
2me

mlB. Such a splitting of degenerate states in a multiplet is called Zeeman effect.

The Bohr magneton

µB =
e~

2me

= 57.88 . . . µeV/T (4.11)

provides the magnitude of the splitting between two lines.

Combining with the Hamiltonian for the electron spin H = ge
e

2me
B · Ŝ, the influ-

ence of a constant magnetic field (in z-direction) on a bound electron is given by

the Hamiltonian

Ĥe−B =
e

2me

B
(
L̂z + geŜz

)
Is this operator compatible with the common quantum numbers? We find that

Ĥe−B commutes with L̂z, Ŝz, as well as their sum Ĵz. Furthermore [Ĥe−B, L̂
2] =

0 and [Ĥe−B, Ŝ
2] = 0. Thus there is a common system of quantum number

|l, ml, s, ms〉with the operators L̂z, Ŝz, L̂2, and Ŝ2. This provides the splitting

|n = 2, l = 1,ml, s = 1/2,ms〉1 splits as µBB(mL + gems)

On the other hand we learned that to describe spin-orbit interaction one has to

use the basis of total angular momentum |j, m, l, s〉. However, we find that in the

presence of a magnetic field the commutator

[
e

2me

B(L̂z + geŜz), Ĵ
2] =

e

2me

B(ge − 1)[Ŝz, Ĵ
2] = i~

eB(ge − 1)

me

(L̂xŜy − L̂yŜx)

is finite, where the relation [L̂z + Ŝz, Ĵ
2] = 0 and [Ŝz, Ĵ

2] = 2i~(L̂xŜy − L̂yŜx) was

used. Thus there are no common eigenstates of Ĵ2 and the Hamiltonian in the

presence of a magnetic field and system 2 cannot be entirely right.

The energy of the spin-orbit interaction is comparable with µBB for magnetic

fields of the order of 1 Tesla. Thus for much larger fields, we may neglect the
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Figure 4.1: Results of a complete diagonalization of the LS-coupling and the ex-

ternal field term Ĥ = 2α
~2 L̂ · Ŝ + µBB

~

(
L̂z + 2Ŝz

)
for the six states of the 2p level.

For B = 0 we recover the fine structure, which splits in the magnetic field. For

µB � α, the lines follow approximatively µBB(ml + 2mS) + 2αmlms. Since mj is

a good quantum number in both systems 1 and 2, states with different mj-values

do not interact (and may thus cross each other). In contrast, the two states with

mj = 1/2 (and similarly for mj = −1/2) couple to each other and thus neither

j nor ml,ms are good quantum numbers for B 6= 0. For the hydrogen atom, we

have α ≈ 14µeV and α/µB ≈ 0.24 Tesla.

spin-orbit interaction and consider the Zeeman splitting within system 1. In the

opposite case of much weaker field, one can find the splitting of the fine-structure

levels according to mj with an effective g-factor as described in the chapter on

perturbation theory. This is illustrated in Fig. (4.1).
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4.3 Landau Levels

Having considered the bound state before, we now focus on a free electron in a

constant magnetic field as described by Eq. (4.10). If the magnetic field points in

z−direction we find

Ĥ =
p̂2

2m
− q

2m
BL̂z +

q2B2

8m
(x̂2 + ŷ2) (4.12)

This Hamiltonian is rotational invariant with respect to the z- axis. Thus [Ĥ, L̂z] =

0. Similarly [Ĥ, p̂z] = 0 holds. Thus we have a joint set of eigenstates of Ĥ, p̂z,

and L̂z.

At first we can separate the z direction, where the eigenstates are plane waves

eikz in spatial representation with energy E(k) = ~2k2/2m. We are left with a

two-dimensional problem

Ĥ =
p̂2
x + p̂2

y

2m
− q

2m
BL̂z +

q2B2

8m
(x̂2 + ŷ2)

With ω = qB/(2m) this provides

Ĥ =
p̂2
x + p̂2

y

2m
+

1

2
mω2(x̂2 + ŷ2)︸ ︷︷ ︸
Ĥosc

−ωL̂z

Now Ĥosc is just the two-dimensional isotropic oscillator which can be immediately

solved, yielding energy levels EN = ~ω(N + 1) where N = 0, 1, 2, . . . and there are

N + 1 states for each level N .

As [Ĥosc, L̂z] = 0 these states can be chosen as eigenstates of L̂z. In spatial

representation with polar coordinates r, ϕ we find L̂SR
z = ~

i
∂
∂ϕ

with eigenstates

eimϕ and eigenvalues m~, which fully agrees with the three dimensional case.3

Then one finds the

Proposition: The eigenstates of the two-dimensional harmonic oscillator Ĥosc

with energy EN = ~ω(N + 1) can be classified as the (N + 1) states |N,mN〉 with

mN = −N, 2−N, . . . N , where L̂z|N,mN〉 = mN~|N,mN〉.
3Note that Ĥosc does not commute with L̂x and L̂y. Thus we do note find the multiplets

m = −l,−l+1, . . . l as characteristic for systems which are rotational invariant in all three spatial

directions.
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Figure 4.2: Sketch for the origin of Landau levels. In the left panel, the eigenstates

of
p̂2
x+p̂2

y

2m
+ 1

2
mω2(x̂2 + ŷ2) re shown and classified according to the quantum number

mN . In the right panel the additional term −ωL̂z is taking into account, where

ω = qB/(2m).

which is proven in Sec. 4.3.1 and is depicted in the left panel of Fig. 4.2. Now the

term −ωL̂z provides the additional energy −~ωm and thus the total energy of the

state|N,mN〉 is

E(N,mN) = EN − ~ωmN = ~ω(N −mN + 1) (4.13)

as shown in the right panel of Fig. 4.2. For each N the maximal possible mN

provides E(N,N) = ~ω. The next largest mN provides E(N,N − 2) = 3~ω and

so on. We find that all these levels have an infinite degeneracy. These levels are

called Landau levels.

The energy of the Landau levels is given by ~ω(2n+ 1) or

ELandau = ~ωc
(
n+

1

2

)
where the cyclotron frequency ωc = eB/m corresponds to the frequency with which

the classical electrons spiral in a constant magnetic field.

4.3.1 Determining the possible m−values of the states |N,m〉

Here we want to proof the proposition on page 88. Using the standard definitions

L̂z = x̂p̂y − ŷp̂x , ax =

√
mω

2~
x̂+ i

1√
2m~ω

p̂x , and ay =

√
mω

2~
ŷ+ i

1√
2m~ω

p̂y
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we can directly identify

L̂z = i~(a†yax − a†xay) (4.14)

and calculate the commutator relations

[L̂z, a
†
x] = i~a†y and [L̂z, a

†
y] = −i~a†x (4.15)

With these tools at hand we proof the proposition by induction in N :

For N = 0 the ground state of the harmonic oscillator satisfies ax|0, 0〉 = 0 and

ay|0, 0〉 = 0. Thus we find from Eq. (4.14) L̂z|0, 0〉 = 0 and this state is indeed an

eigenstate of L̂z with eigenvalues m0 = 0.

Assume the proposition is valid for a given N ≥ 0. Then we consider the state

|Ψ〉 =
1√
2

(a†x − ia†y)|N,mN〉

and find

Ĥ|Ψ〉 = ~ω(a†xax + a†yay + 1)
1√
2

(a†x − ia†y)|N,mN〉 = . . . = (N + 2)~ω|Ψ〉

L̂z|Ψ〉 = L̂z
1√
2

(a†x − ia†y)|N,mN〉 = . . . = (mN − 1)~|Ψ〉

where the commutation rules for the creation/annihilation operators and Eq. 4.15

are applied in the explicit calculation. Thus the state |Ψ〉 can be classified as

|N + 1,mN − 1〉. Similarly the state |Ψ〉 = 1√
2
(a†x + ia†y)|N,mN〉 can be classified

as |N + 1,mN + 1〉. Considering the definition of mN this procedure constructs

states |N + 1,mN+1〉 with mN+1 = −(N + 1),−(N + 1) + 2, . . . (N + 1). As the

dimension of the subspace of the operator Ĥ with eigenvalue (N + 1)~ω is just

N + 1, only N + 1 states can be linearly independent, i.e. those with different m.

Thus the states 1√
2
(a†x− ia†y)|N,mN〉 and 1√

2
(a†x + ia†y)|N,mN − 2〉 may only differ

by a phase factor.

Thus the proposition is shown for N + 1 and the proof by induction is closed.



Chapter 5

PERTURBATION THEORY

Only very few physical systems (such as the harmonic oscillator or the hydrogen

atom, e.g.) can be solved exactly by analytical methods. Thus one requires ap-

proximate solutions of a known Hamiltonian. Even worse, for many systems the

forces are not known precisely so one has to “guess” some rough Hamiltonian.

Other systems have such a complex structure that it is impossible to take all in-

teractions into account. In this chapter we will first concentrate on approximation

methods to calculate eigenvalues and eigenstates to the Hamiltonian. Later we

will shift focus and consider time-dependent effects.

In most situations it is reasonable to split the Hamilton operator into a known part

Ĥ0 (typically time-independent), where one has sufficient knowledge about the

eigenstates and their energies (either by calculations or by symmetry arguments),

and a perturbation term V̂ (t)

Ĥ(t) = Ĥ0 + V̂ (t) . (5.1)

The eigenstates |a0〉 of Ĥ0 satisfy

Ĥ0|a0〉 = E0
a|a0〉 (5.2)

and form a complete ON basis of the ket space.

91
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5.1 Stationary Perturbation Theory

Let V̂ be independent of time. Here we are looking for the exact eigenstates of

(Ĥ0 + λV̂ )|a〉 = Ea|a〉 . (5.3)

The real parameter λ is included here, which allows to change the magnitude of

the perturbation gradually. In the final result, λ = 1 has to be used. The energies

Ea and eigenstates |a〉 can be expanded in the parameter λ as

Ea = E0
a + λE1

a + λ2E2
a + . . . |a〉 = |a0〉+ λ|a1〉+ λ2|a2〉+ . . . (5.4)

which is called Rayleigh-Schrödinger perturbation series1. Here the upper indices

label the order on the perturbation series, i.e. E1
a denotes the change in energy of

the state |a0〉 in the first order of the parameter λ. The eigenstates are only defined

up to a complex factor. In order to uniquely define the state |a〉, we impose the

normalization 〈a|a〉 = 1 and choose the phase such that 〈a0|a〉 is a real positive

number for all λ ∈ R. The latter condition provides

〈a0|an〉 ∈ R

and the normalization provides with (5.4)

1 = 〈a0|a0〉︸ ︷︷ ︸
=1

+λ〈a0|a1〉+ λ〈a1|a0〉︸ ︷︷ ︸
=2λRe{〈a0|a1〉}

+O{λ2}

Thus 〈a0|a1〉 ∈ R results in

〈a0|a1〉 = 0 (5.5)

Inserting the expansion (5.4) into Eq. (5.3) provides:(
Ĥ0 + λV̂

) (
|a0〉+ λ|a1〉+ λ2|a2〉+ . . .

)
=
(
E0
a + λE1

a + λ2E2
a + . . .

) (
|a0〉+ λ|a1〉+ λ2|a2〉+ . . .

)
1Note that there are many cases, where this expansion does not converge. A prominent

example is the one-dimensional harmonic oscillator Ĥ0 with V̂ (x) = αx̂4 for α > 0. Nevertheless

the lowest order terms in λ provide typically reasonable approximations.
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Sorting the orders in λi, one obtains

O(λ0) Ĥ0|a0〉 =E0
a|a0〉

O(λ) Ĥ0|a1〉+ V̂ |a0〉 =E0
a|a1〉+ E1

a|a0〉 (5.6)

O(λ2) Ĥ0|a2〉+ V̂ |a1〉 =E0
a|a2〉+ E1

a|a1〉+ E2
a|a0〉 (5.7)

Multiplying Eq. (5.6) with 〈b0| provides

〈b0|V̂ |a0〉 = (E0
a − E0

b )〈b0|a1〉+ E1
aδa,b (5.8)

Now two different cases have to be considered separately.

5.1.1 Non-degenerate case

Let E0
a be an eigenvalue of Ĥ0, which has only one corresponding eigenstate. This

means E0
b 6= E0

a for all states b 6= a. Such a state |a0〉 is called non-degenerate.

Then Eq. (5.8) provides for b = a

E1
a = 〈a0|V̂ |a0〉 (5.9)

and for b 6= a

〈b0|V̂ |a0〉 = (E0
a − E0

b )〈b0|a1〉 .

As the states |b0〉 form a complete system we find

|a1〉 =
∑
b

|b0〉〈b0|a1〉 =
∑

bwith b6=a

〈b0|V̂ |a0〉
(E0

a − E0
b )
|b0〉 (5.10)

where Eq. (5.5) has been applied for b = a. Then we obtain

In first order of perturbation theory the non-degenerate state |a0〉 exhibits

• a shift in energy by the expectation values 〈a0|V̂ |a0〉 of the perturbation

potential for the unperturbed state.

• the admixture of other eigenstates |b0〉 of Ĥ0, see Eq. (5.2), which is domi-

nated by states with an energy E0
b ≈ E0

a.
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Multiplying Eq. (5.7) with 〈a0| one obtains:

〈a0|Ĥ0|a2〉︸ ︷︷ ︸
=E0

a〈a0|a2〉

+〈a0|V̂ |a1〉 = E0
a〈a0|a2〉+ E1

a 〈a0|a1〉︸ ︷︷ ︸
=0 due to Eq. (5.5)

+E2
a

and using Eq. (5.10) one obtains:

E2
a =

∑
b 6=a

|〈a0|V̂ |b0〉|2

E0
a − E0

b

(5.11)

Thus we find in second order perturbation theory

• The ground state is always shifted to lower energies

• Strongly coupling states (i.e. large matrix element 〈a0|V̂ |b0〉) which are close

in energy (small |E0
b − E0

a|) repel each other.

Example: A one-dimensional harmonic oscillator is perturbed by a quadratic term:

Ĥ0 =
p̂2

2m
+

1

2
mω2x̂2 , V̂ =

1

2
mα2x̂2

Calculate the energy shift up to second order and compare the result with the

exact solution.

Eqs. (5.9,5.11) provide the energy shift En ≈ E0
n +E1

n +E2
n + . . . with

E0
n =~ω

(
n+

1

2

)
E1
n =〈n|V̂ |n〉 =

1

2
mα2〈n|x̂2|n〉

E2
n =

∑
k 6=n

|〈k|V̂ |n〉|2

E0
n − E0

k

=

(
mα2

2

)2∑
k 6=n

|〈k|x̂2|n〉|2

E0
n − E0

k

The matrix element for x̂2 have been calculated as an example in

Sec. 2.1 with the result

〈n+ 2|x2|n〉 =
~

2mω

√
(n+ 1)(n+ 2)

〈n|x2|n〉 =
~

2mω
(2n+ 1)

〈n− 2|x2|n〉 =
~

2mω

√
n(n− 1)
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We now get

E1
n =

mα2

2

~
2mω

(2n+ 1) =
1

2

(α
ω

)2

~ω
(
n+

1

2

)
E2
n =

(
mα2

2

~
2mω

)2(
n(n− 1)

2~ω
+

(n+ 1)(n+ 2)

−2~ω

)
=− 1

8

(α
ω

)4

~ω
(
n+

1

2

)
In our example one can calculate the eigenstates of Ĥ0 + λV̂ exactly

as this is just a new oscillator with frequency
√
ω2 + λα2. The exact

eigenvalues are thus En(λ) = ~
√
ω2 + λα2(n+ 1/2) and Taylor expan-

sion in λ provides

En(λ) = ~ω
(

1 + λ
α2

2ω2
− λ2 α

4

8ω4
+O{λ3}

)(
n+

1

2

)
This fully agrees with E0

n + λE1
n + λ2E2

n +O{λ3} with coefficients Ej
n

evaluated by perturbation theory.

5.1.2 Degenerate case

Now we assume that there are several states |i, a0〉 with i = 1, 2, . . . N which are all

eigenstates of Ĥ0 with the energy E0
a. This is called a degenerate level. Replacing

|a0〉 by |i, a0〉 in Eq. (5.6) and multiplying by 〈j, a0| provides:

Vji ≡ 〈j, a0|V̂ |i, a0〉 = E1
i,aδj,i (5.12)

This is contradictory if the matrix Vji is not diagonal. As Vji is Hermitian, there is

a set of N orthonormal columns c
(n)
i with n = 1, 2, . . . N , which satisfy

∑
i Vjic

(n)
i =

Enc
(n)
j . Now we choose the new eigenstates

|ñ, a0〉 =
∑
i

c
(n)
i |i, a0〉

of Ĥ0, which span the same subspace as the original states |i, a0〉. In this basis we

find

〈m̃, a0|V̂ |ñ, a0〉 =
∑
i,j

c
(m)∗
j Vjic

(n)
i =

∑
j

c
(m)∗
j Enc

(n)
j = Enδm,n
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and Eq. (5.12) provides that the changes in energy in first order perturbation

theory are just the eigenvalues of the matrix Vji in the subspace belonging to the

degenerate level E0
a.

This can be summarized by the following operational rules to determine the effect

of the perturbation potential on an energy level E0
a which is degenerate.

1. Identify all pairwise orthonormal states |i, a0〉 satisfying Ĥ0|i, a0〉 = E0
a|i, a0〉.

Here i = 1, 2, . . . N , where N be the number of these states. (One calls

such an energy as N -fold degenerate.) These states span the N -dimensional

subspace M of the ket-space.

2. Calculate the N ×N matrix Vji = 〈j, a0|V̂ |i, a0〉
3. Determine the N eigenvalues En and corresponding eigencolumns c

(n)
j of the

matrix Vji. Apply the normalization
∑

j |c
(n)
j |2 = 1.

4. Construct the new states |ñ, a0〉 =
∑

i c
(n)
i |i, a0〉 which form an alternative

ON basis for the subspace M.

5. The new basis states exhibit the energy shifts E1
ña = En in the first order of

perturbation theory.

The second order can be performed analogously to Eq. (5.11) provided that the

the new basis |ñ, a0〉 is used.

5.1.3 Example: The Stark effect

Consider a hydrogen atom in an external electric field EEE = Eez. The electric

potential φ(r) = −Ez provides the perturbation

V̂ = eE ẑ

taking into account the charge −e of the electron.

The unperturbed levels are the known states |n, l,m〉 of the hydrogen atom

which are numbered by the principal quantum number n = 1, 2, . . . and the an-

gular momentum numbers l,m, where l is restricted to l = 0, 1, . . . n − 1. From

elementary courses we remember the energy eigenvalues

En,l = − ~2

2mea2
B

1

n2
≈ −13.6eV

1

n2
(5.13)
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where aB = 4πε0~2/(mee
2) ≈ 0.529Å is the Bohr radius. The spatial representa-

tion of the corresponding eigenstates reads

〈r|n, l,m〉 = φn,l,m(r, θ, ϕ) =
1

r
unl(r)Y

m
l (θ, ϕ)

with the spherical harmonics Y m
l (θ, ϕ) given on page 56. The radial functions

unl(r) are normalized as ∫ ∞
0

dr un′l(r)unl(r) = δn′n

and read

unl(r) =

√
2

naB

√
(n− l − 1)!

2n[(n+ l)!]3

(
2r

naB

)l+1

L2l+1
n+l

(
2r

naB

)
exp

(
− r

naB

)
with the Laguerre-Polynomials:

L0
k(x) = ex

dk

dxk
(
xke−x

)
and Lµk(x) = (−1)µ

dµ

dxµ
L0
k(x)

In particular this provides:

u10 =
2r√
a3
B

exp

(
− r

aB

)
u20 =

r√
2a3

B

(
1− r

2aB

)
exp

(
− r

2aB

)
u21 =

r√
6a3

B

r

2aB
exp

(
− r

2aB

)
which is used in the calculations below.

The ground state n = 1 is non-degenerate. (Spin is not considered here, as it

does not show any interaction with the electric field.) In the following we work in

spatial representation. The first order in perturbation theory provides

E1
n=1 = 〈1, 0, 0|V̂ |1, 0, 0〉 =

∫
d3r

1√
πa3

B

exp

(
− r

aB

)
eEz 1√

πa3
B

exp

(
− r

aB

)
= 0 ,

as the integrand just changes its sign for ±z. The second order provides a lowering

of the energy.

The first excited state n = 2 has a fourfold degeneracy. The corresponding

states are |1〉 = |2, 0, 0〉, |2〉 = |2, 1, 0〉, |3〉 = |2, 1,−1〉 and |4〉 = |2, 1, 1〉. Now the

matrix 〈i|V̂ |j〉 has to be determined in this subspace. Due to symmetry most of

the matrix elements are zero, as shown below.
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• 〈n′, l′,m′|ẑ|n, l,m〉 = 0 for m 6= m′

Proof: As [L̂z, ẑ] = [(x̂p̂y − ŷp̂x), ẑ] = 0 we find

0 = 〈n′, l′,m′|[L̂z, ẑ]|n, l,m〉 = ~(m′ −m)〈n′, l′,m′|ẑ|n, l,m〉

For m 6= m′ one can divide by ~(m′ −m) which proofs the conjecture. �

• 〈n′, l,m|ẑ|n, l,m〉 = 0

Proof:

〈n′, l,m|ẑ|n, l,m〉 =

∫
d3r

1

r
un′l(r)z

1

r
unl(r) |Y m

l (θ, ϕ)|2

Under the inversion r → −r the absolute value r is conserved and z → −z
while the spherical harmonics receive a factor (−1)l. Thus the sign of the

integrand changes and the total integral is zero. �

• Direct evaluation provides:

〈2, 0, 0|z|2, 1, 0〉 =

∫
dr dϕ d cos θ r2 1

r
u20(r)

[
Y 0

0 (θ, ϕ)
]∗
r cos θ

1

r
u21(r)Y 0

1 (θ, ϕ)

=

∫
dr dϕ d cos θ

√
3

4π
(cos θ)2 r4

4
√

3a4
B

(
1− r

2aB

)
exp

(
− r

aB

)
= −3aB

Together this provides the matrix

Vij =


0 −3eEaB 0 0

−3eEaB 0 0 0

0 0 0 0

0 0 0 0


The eigenvalues are obtained from the secular equation

0 = det (Vij − Eδi,j) = E2[E2 − 9(eEaB)2]

resulting in the four eigenvalues and corresponding eigenstates

E1 =− 3eEaB →|1̃〉 =
1√
2

(|1〉+ |2〉) ≡ 1√
2

(|2, 0, 0〉+ |2, 1, 0〉)

E2 = + 3eEaB →|2̃〉 =
1√
2

(|1〉 − |2〉) ≡ 1√
2

(|2, 0, 0〉 − |2, 1, 0〉)

E3/4 =0 →|3̃〉 = |3〉 ≡ |2, 1,−1〉, |4̃〉 = |4〉 ≡ |2, 1, 1〉
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Figure 5.1: Wavefunctions for differ-

ent states of the hydrogen atom as a

function for z for fixed x = 0 and

y = 0. The density of the state

|1̃〉 = (|2, 0, 0〉+ |2, 1, 0〉)/
√

2 exhibits

an average shift of the electron den-

sity to the left.

Interpretation: The wave function u21(r)Y 0
1 (θ, ϕ) is positive for z > 0 and neg-

ative for z < 0. u20(r)Y 0
0 (θ, ϕ) is negative for r > 2aB. Thus the superposition

of both functions in the state |1̃〉 is constructive for larger negative z values and

destructive for larger positive z values, see also Fig. 5.1. Thus the state |1̃〉 exhibits

a shift of the electron density to negative z values, corresponding to an electric

dipole moment pointing in z direction. As it is aligned with the electric field the

energy of the state is lowered.

5.2 Time-dependent Perturbation Theory

In contrast to the stationary perturbation theory, where approximations for the

eigenstates of the perturbed Hamiltonian are evaluated, we consider now the time

dependent |Ψ(t)〉 of a system, which is prepared in the state |Ψ(0)〉 = |a0〉 at t = 0.

Again we separate the Hamiltonian into a solvable part and a perturbation, see

Eqs. (5.1,5.2). The dynamic evolution is given by the Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 =

[
Ĥ0 + V̂ (t)

]
|Ψ(t)〉 (5.14)

Of particular interest is the probability Pb(t) to find the system in another eigen-

state |b0〉 of Ĥ0 at a later time t, which can be evaluated via

Pb(t) = |〈b0|Ψ(t)〉|2 for |Ψ(0)〉 = |a0〉 (5.15)

Without the perturbation (i.e. V̂ = 0), we find |Ψ(t)〉 = e−iE0
at/~|a0〉, as |a0〉 is an

eigenstate of Ĥ0. Thus Pb(t) = 0 for b 6= a while Pa(t) = 1 and the system stays
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in state |a0〉 forever. However, for a finite perturbation V̂ (t), the state |a0〉 is no

longer an eigenstate of the full Hamiltonian (5.1) and the time-dependent solution

of the Schrödinger equation provides admixtures by different states |b0〉.

In order to evaluate |Ψ(t)〉 perturbatively, it is convenient to apply the interaction

picture. This concept is of rather general use in quantum mechanics and will be

introduced in section 5.2.1. It significantly simplifies the calculation so that the

general result can be directly obtained in section 5.2.2.

5.2.1 Interaction picture (Dirac picture)

For Ĥ = Ĥ0 the time-dependence of an arbitrary state |Ψ(t)〉 is given by, see

Eq.(1.38):

|Ψ(t)〉 =
∑
a

ca exp

(
−i
E0
at

~

)
|a0〉 =

∑
b

|b0〉 exp

(
−i
E0
b t

~

)
〈b0|

∑
a

ca|a0〉

= exp

(
−i
Ĥ0t

~

)
|Ψ(t = 0)〉

where the definition (1.29) for a function of an operator was used. In order to

treat the perturbation V̂ (t) we want to treat the dynamics of Ĥ0 exactly. Thus

we make the ansatz:

|Ψ(t)〉 = exp

(
−i
Ĥ0t

~

)
|ΨD(t)〉

where |ΨD(t)〉 is the ket in the interaction picture (also Dirac-picture, thus we use

the index D). With Eq. (5.14) we obtain

i~
∂

∂t
|ΨD(t)〉 =i~

∂

∂t

[
exp

(
i
Ĥ0t

~

)
|Ψ(t)〉

]

=− Ĥ0 exp

(
i
Ĥ0t

~

)
|Ψ(t)〉+ exp

(
i
Ĥ0t

~

)(
Ĥ0 + V̂ (t)

)
|Ψ(t)〉

=V̂ D(t)|ΨD(t)〉
(5.16)
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where we used the fact that [Ĥ0, exp(iĤ0t/~)] = 0, and defined the operator in

interaction-picture

V̂ D(t) = exp

(
i
Ĥ0t

~

)
V̂ (t) exp

(
−i
Ĥ0t

~

)
(5.17)

In the interaction picture all states and operators have a modified time dependence.

Thereby Ĥ0 does not appear in the equation of motion (5.16) for the states.

5.2.2 Result

Using the initial state |Ψ(0)〉 = |a0〉 at t = 0, the differential equation (5.16) can

be formally integrated as

|ΨD(t)〉 = |a0〉+
1

i~

∫ t

0

dt′ V̂ D(t′)|ΨD(t′)〉 (5.18)

We find that for short times and small perturbations V = 〈V̂ D(t′)〉, the state

hardly changes and thus one may expand

|ΨD(t)〉 = |a0〉+O
{
V t

~

}
Inserting this into the integrand in Eq. (5.18) providing

|ΨD(t)〉 = |a0〉+
1

i~

∫ t

0

dt′ V̂ D(t′)|a0〉+O

{(
V t

~

)2
}

(5.19)

We are now interested in the probability Pb(t) to find the system in state |b0〉 at

time t, which is given by |〈b0|Ψ(t)〉|2

Pb(t) = |〈b0|Ψ(t)〉|2 = |〈b0|e−iEbt/~|Ψ(t)〉|2 = |〈b0|e−iĤ0t/~|Ψ(t)〉|2 = |〈b0|ΨD(t)〉|2

where we used 〈b0|Ĥ0 = 〈b0|E0
b . Thus we find for b 6= a in lowest order in V̂ .

Pb(t) =

∣∣∣∣ 1

i~

∫ t

0

dt′ 〈b0|V̂ D(t′)|a0〉
∣∣∣∣2 (5.20)

This result is commonly used if one wants to study the impact of short laser pulses

on atomic states. If the pulse has a finite duration T , it follows V̂ D(t′) = 0 for

t′ > T and Pb(t) is constant for t > T . Thus the transition probabilities only

change while the perturbation signal is active.
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5.2.3 Action of a laser pulse on a hydrogen atom

A hydrogen atom is in the ground state |g〉 = |n = 1, l = 0,m = 0〉 for t = 0. A

short laser pulse of duration τ with the electric field EEE(t) = E0 sin(ωt)ez provides

the perturbation potential

V̂ (t) = eE0 sin(ωt)ẑ

for the time interval 0 < t < τ . Here we want to calculate the probability P to find

the atom in the state |e〉 = |n = 2, l = 1,m = 0〉 after the pulse.

In order to apply Eq. (5.20), we have to evaluate 〈e|V̂ D(t′)|g〉. Inserting Eq. (5.17)

and using

exp

(
−i
Ĥ0t

′

~

)
|g〉 = exp

(
−i
E1t

′

~

)
|g〉 and 〈e| exp

(
i
Ĥ0t

′

~

)
= exp

(
i
E2t

′

~

)
〈e| ,

which follow immediately from Eq. (1.29) if one applies the eigenstates |n, l,m〉 of

Ĥ0, we find

〈e|V̂ D(t′)|g〉 =
ei(ωeg+ω)t′ − ei(ωeg−ω)t′

2i
eE0〈e|ẑ|g〉 with ωeg =

Ee − Eg
~

= 1.55×1016/s

Using the expression from pages 56 and 97, the matrix element reads

〈e|ẑ|g〉 =

∫
r2 sin θdrdθdϕ

u21(r)

r
Y 0

1 (θ, ϕ)r cos θ
u10(r)

r
Y 0

0 (θ, ϕ)

=

∫ ∞
0

dr

∫ 1

−1

d cos θ

∫ 2π

0

dϕ
r4

4
√

2πa4
B

cos2 θe−3r/2aB =

∫ ∞
0

dr
r4

3
√

2a4
B

e−3r/2aB

=
27
√

2

35
aB

Together this provides us with the transition probability

P =

(
27
√

2eE0aB
35~

)2 ∣∣∣∣∫ τ

0

dt′
ei(ωeg+ω)t′ − ei(ωeg−ω)t′

2i

∣∣∣∣2 (5.21)

=

(
27
√

2eE0aB
35~

)2 ∣∣∣∣−ei(ωeg+ω)τ − 1

2(ωeg + ω)
+

ei(ωeg−ω)τ − 1

2(ωeg − ω)

∣∣∣∣2

=

(
27
√

2eE0aB
35~

)2 ∣∣∣− iei(ωeg+ω)τ/2 sin((ωeg + ω)τ/2)

ωeg + ω

+ iei(ωeg−ω)τ/2 sin((ωeg − ω)τ/2)

ωeg − ω

∣∣∣2 (5.22)
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Figure 5.2: Transition probabil-

ity according to Eq. (5.22) for a

laser pulse with E0 = 1010V/m

and a duration of 5 cycles, i.e.

τ = 10π/ω. (Such ’attosec-

ond’ pulses with few cycles are a

topic of research at the division

of atomic physics in Lund.)

In Figure 5.2 the probability is plotted for a pulse with 5 cycles. We find that the

transition probability peaks around the resonance frequency ω ≈ ωeg. For other

frequencies, the oscillatory terms ei(ωeg+ω)t′ and ei(ωeg−ω)t′ in Eq. (5.21) provide no

result for sufficiently long integration times τ . Indeed the width of the peak around

ω ≈ ωeg is of the order 1/τ .

As P ∝ E2
0 , see Eq. (5.22), the probability become four times larger, if one doubles

the laser field strength. In the case of Fig. 5.2, this provides probabilities above

one, which are clearly wrong. This indicates the breakdown of the perturbation

theory, as the higher order terms in Eq. (5.19) become of crucial relevance.

5.3 Fermi’s Golden Rule

The t′-integral in Eq. (5.20) is easily solvable for fictitious perturbations of the

form

V̂ (t) = F̂ e−iωt

resulting in the transition-probability

Pb(t) = |〈b0|F̂ |a0〉|2Dt

(
E0
b − E0

a − ~ω
)

for b 6= a (5.23)

with the auxiliary function

Dt(∆E) =

∣∣∣∣1~
∫ t

0

dt′ei∆Et′/~
∣∣∣∣2 =

∣∣∣∣ei∆Et/~ − 1

i∆E

∣∣∣∣2
=

∣∣∣∣∣ei ∆E
2
t/~ ei ∆E

2
t/~ − e−i ∆E

2
t/~

i∆E

∣∣∣∣∣
2

=
4 sin2

(
∆E

2
t/~
)

∆E2

(5.24)
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Figure 5.3: The function Dt(∆E) from

Eq. (5.24). As ~ = 0.66eV/fs the energy

scale is 0.66 meV for t = 1 ps (semicon-

ductors), 0.66 eV for t = 1 fs (molecules),

and 0.66 MeV for t = 10−21 s (high en-

ergy physics).
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Figure 5.3 shows that Dt(∆E) has large values only for −2π~/t < ∆E < 2π~/t,
where the maximum Dt(0) = t2/~2 increases rapidly with time. Furthermore a

glance to a table of integrals gives
∫∞
−∞ dxDt(x) = 2πt/~. Thus we define the

function

δt(∆E) =
~

2πt
Dt (∆E)

which is a representation of the δ-function in the limit t → ∞. Now we consider

two typical cases:

(i) Setting ω = 0, i.e. considering a constant potential V̂ (t) = V̂ , we obtain from

Eq. (5.23)

Pa→b(t) =
2πt

~
|〈b0|V̂ |a0〉|2δt(E0

b − E0
a) (5.25)

(ii) Now we consider periodic perturbation potentials. Being a part of the Hamilto-

nian, V̂ (t) is a Hermitian operator, The most general form of a Hermitian operator

containing a single frequency component ω is

V̂ (t) = F̂ e−iωt + F̂ †eiωt

Treating both terms separately (which is possible for t � ω/2π, where the δt

functions do not overlap) we obtain

Pa→b(t) =
2πt

~
|〈b0|F̂ |a0〉|2δt(E0

b − E0
a − ~ω) +

2πt

~
|〈b0|F̂ †|a0〉|2δt(E0

b − E0
a + ~ω) .

(5.26)

The function δt(∆E) can be replaced by a δ-function, if the following conditions

are met:



5.3. FERMI’S GOLDEN RULE 105

• There is an integration over a continuum of final states |b0〉 or frequencies ω

with amplitude Fω, as the δ-function is only properly defined together with

an integral over its argument.

• The observation time t is sufficiently long, so that the matrix element |〈b0|V̂ |a0〉|2

(or |〈b0|F̂ω|a0〉|2 ) is approximately constant within the energy range |E0
b −

E0
a ± ~ω| . 2π~/t of the allowed final states b (or frequencies ω).

• The perturbation V̂ is sufficiently weak, so that the probability to reach any

possible state
∑

b 6=a Pb(t) does not reach unity within the observation time.

Replacing δt(∆E) by δ(E) in Eqs. (5.25,5.26) we find that that Pb(t) increases

linearly in time and it makes sense to define Γa→b = Pb(t)/t as the transition rate

from state a to state b. This provides

Fermi’s golden rule:

For a time-independent perturbation potential V̂ the transition rate from state a

to state b is given by

Γa→b =
2π

~
|〈b0|V̂ |a0〉|2δ(E0

b − E0
a) (5.27)

Thus transitions require the same energy of the initial and final state.

A periodic perturbation potential V̂ (t) = F̂ e−iωt+F̂ †eiωt with frequency ω provides

Γa→b =
2π

~
|〈b0|F̂ |a0〉|2δ(E0

b −E0
a−~ω)+

2π

~
|〈b0|F̂ †|a0〉|2δ(E0

b −E0
a +~ω) . (5.28)

In this case transitions are only possible if the energy of the final state is ~ω
higher/lower than the energy of the initial state. This corresponds to the absorp-

tion/emission of the energy quantum ~ω from/to the oscillating field, respectively.

Note that Fermi’s golden rule provides a constant transition rate, i.e., a linear

increase of the probability Pb(t) for the system to be found in the new state. This

essentially differs from the behavior found for the Rabi oscillation (see exercise),

where Pb(t) ∝ sin2(ΩRt/2), and thus in the beginning Pb(t) ∝ t2 is found. The

reason for this difference is that one has a system with two states and a fixed

frequency in the Rabi oscillation scenario. Thus there is neither a continuum of

final states |b0〉 nor of frequencies ω, as required for the replacement of δt(E
0
b −

E0
a + ~ω) in Eq. (5.26) by δ(E0

b − E0
a + ~ω). Indeed, from the definition (5.24) of
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Dt(E
0
b −E0

a + ~ω), we recover the correct initial power law Pb(t) ∝ t2, if the laser

field is in resonance with the energy difference of both states.

5.3.1 Example: β-decay of the neutron

Nuclei are eigenstates of the strong interaction but not necessarily eigenstates of

the weak interaction, which causes transitions between different nuclei. For the

β-decay of the neutron the following many-particle states are of relevance:

• A neutron (in rest):

State |a0〉 with energy E0
a = mnc

2

• A proton (almost in rest) + free electron with wave vector ke + free antineu-

trino with wave vector kν :

State |b0〉 = |ke,kν〉 with energy

E0
b = mpc

2 +
√
m2
ec

4 + ~2c2k2
e +

√
m2
νc

4 + ~2c2k2
ν

where we take into account a possible finite mass mν of the neutrinos.2

In addition we assume that the matrix element |〈ke,kν |V̂weak interaction|a0〉|2 = g2

is constant. (This is a point-interaction, as assumed by Enrico Fermi 1934.) In a

typically experiment, the momentum pe = ~ke of the final electron is measured.

Thus, we want to evaluate the transition rate to a final state ke with arbitrary kν

Γa→ke =

∫
d3kν︸︷︷︸

4πk2
νdkν

2π

~
g2δ

(mp −mn)c2 +
√
m2
ec

4 + p2
ec

2︸ ︷︷ ︸
=−A(pe)

+
√
m2
νc

4 + ~2c2k2
ν


Now, we use the relation∫ b

a

dx g(x)δ(f(x)) =
∑
i

g(xi)

|f ′(xi)|
where f(xi) = 0 with a < xi < b

and define the step function by Θ(x) = 1 for x > 0 and Θ(x) = 0 for x < 0. After

a few lines of algebra we find:

Γa→ke =
8π2g2

~4c3
A(pe)

√
A(pe)2 −m2

νc
4 Θ(A(pe)−mνc

2)

2As indicated by Neutrino oscillations. Nobel price 2002 to R. Davis, M. Koshiba, and R.

Giacconi, http://nobelprize.org/nobel_prizes/physics/laureates/2002/phyadv02.pdf)

http://nobelprize.org/nobel_prizes/physics/laureates/2002/phyadv02.pdf
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Figure 5.4: Probability (in arbitrary

units) to find a specific momentum pe of

the electron after the neutron decay as-

suming different masses of the antineu-

trino.

which shows a characteristic momentum dependence for small A (i.e. close to the

maximum electron momentum), as displayed in Fig. 5.4. Fitting to experimental

data provides a rather small upper limit for the neutrino mass, currently 2eV/c2

from the β-decay of Tritium3. (Note that for such small energies the kinetic energy

of the final nucleus becomes relevant, which was neglected for simplicity here.)

5.3.2 Example: Radiation transitions

Consider a hydrogen atom with the Hamilton operator

Ĥ0 =
p̂2

2me

− e2

4πε0|r|

where the eigenstates are given by |a0〉 = |n, l,m,ms〉 with principal quantum

number n, and the quantum numbers for total angular momentum l, its projection

to the z axis ml, as well as spin projection ms. An electromagnetic wave (light)

with frequency ω can be described by the electromagnetic potentials (in Coulomb

gauge ∇ ·A = 0)

A(r, t) =
1

ω
E0(ω) cos(k(ω) · r− ωt) and ϕ(r, t) = 0

3according to the Particle Data Group, W-M Yao et al., J. Phys. G: Nucl. Part. Phys. 33 1

(2006)
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Eqs. (3.11,4.4) provide the Hamilton-Operator (here e > 0 is the elementary

charge).

Ĥ =
[p̂ + eA(r, t)]2

2me

− e2

4πε0|r|
+ ge

e

2me

Ŝ ·B(r, t)

=Ĥ0 +
e

meω
E0(ω) · p̂1

2

(
ei(k(ω)·r−ωt) + e−i(k(ω)·r−ωt))

+ ge
e

2me

Ŝ ·
[
k(ω)× E0(ω)

i

2ω

(
ei(k(ω)·r−ωt) − e−i(k(ω)·r−ωt))]+O(E2

0)

For visible light we have k = 2π/λ ∼ 2π/600nm. In contrast the atomic size is of

the order ∼ aB = 0.0529 nm, and atomic momenta are of the order ~/aB. Thus

terms with kr (in the exponent) as well as the spin-term (Sk ∼ ~2π/600nm� p)

are negligible in a first approximation.

The transition rate between two atomic levels a and b is given by Eq. (5.26)

Γa→b(t) =
2π

~

∣∣∣∣ e

2meω
〈b0|E0(ω) · p̂|a0〉

∣∣∣∣2 [δt(E0
b − E0

a − ~ω) + δt(E
0
b − E0

a + ~ω)
]

Thus, the radiation field is exchanging energy in portions of ~ω (photons) with the

atom. Accordingly the processes are called absorption and emission of a photon

by the atoms.

The size of the transition rate is given by the matrix element, which for |a0〉 =

|n, l,m,ms〉 and |b0〉 = |n′, l′,m′,m′s〉 is given by

〈b0|p̂|a0〉 =〈n′, l′,m′,m′s|me
i

~
[Ĥ0, r̂]|n, l,m,ms〉

=me
i

~
(E0

n′l′ − E0
nl) 〈n′, l′,m′,m′s|r̂|n, l,m,ms〉︸ ︷︷ ︸

=− 1
e
dba

Using the properties of the spherical harmonics, one finds that the dipole matrix

element dba = 0 vanishes unless l′ = l± 1, m′s = ms and m′ =∈ {m− 1,m,m+ 1}.
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For an atom interacting with electromagnetic radiation of frequency ω the tran-

sition rate reads

Γa→b =
2π

~

∣∣∣∣E0 · dba
2

∣∣∣∣2 [δt(E0
b − E0

a − ~ω) + δt(E
0
b − E0

a + ~ω)
]
.

between the atomic levels a and b in dipole approximation (eik·r ≈ 1 and ~k � p).

The possible processes are the induced absorption and the induced emission

of a photon. Both processes exhibit the same rate. The selection rules are

∆l = ±1, ∆m = 0,±1 and ∆ms = 0.

Remarks:

• Taking into account the quantization of the electromagnetic field we have

F̂ † 6= F̂ and the transition rates differ for emission and absorption. This can

be described by the additional spontaneous emission, which is also possi-

ble if the electromagnetic field is in its ground state (the vacuum fluctuations

of the field constitute the perturbation potential).

• Looking at the dipole matrix elements, we find

ez · dba =

{
6= 0 for ∆m = 0

= 0 for ∆m = ±1
ex/y · dba =

{
= 0 for ∆m = 0

6= 0 for ∆m = ±1

Within the basis |l,m〉 of the angular momentum eigenstates the z-axis

stands out, as L̂z is diagonal. For light propagating in the z-direction, the

z-component of E0 vanishes and we only find transitions with ∆m = ±1.

This is consistent with the intrinsic angular momentum ±~ of photons in the

direction of propagation,4 which is transferred in the absorption or emission

process.

• If one takes into account higher order terms eik·r ≈ 1 + ik · r, one obtains

the electrical quadrupole and magnetic dipole transitions. The latter also

include the spin-term in Eq. (5.3.2). In both cases one obtains different

selection rules than for dipole approximation but the rates are several orders

of magnitude smaller because of the reduced matrix elements.

4see, e.g. Section 4B of G. Grynberg, A. Aspect, and C. Fabre Introduction to Quantum

Optics (Cambridge University Press, 2010).
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5.4 Decay within a simple model∗

Here we want to shed light into the meaning of the transition rate in Fermi’s golden

rule. Within a simple model, we show the following:

• Fermi’s golden rule leads to an exponential decay of the probability that the

initial state is occupied with the rate Γ. Here Γ is the sum of transition rates

to all possible states.

• The final states are distributed over a certain energy range with a Lorentzian

distribution function with a full width at half maximum ~Γ.

• Fermi’s golden rule is valid if the finite states form a continuum or, in the case

of discrete states, are densely spaced with a separation in energy significantly

lesser than ~Γ. In addition the finite states must cover an energy range which

is significantly larger than ~Γ.

For this purpose we consider the following model: An initial state |i〉 with energy

Ei is coupled to states |k〉 with energy Ei + k~ε and matrix elements 〈k|V̂ |i〉 = w,

where k = −N,−N+1, . . . N . Using Fermi’s golden rule (5.27), the total transition

rate Γ to any of the final states k is given by

Γ =
∑
k

Γi→k =
2π

~
∑
k

|w|2δ(Ek − Ei) =
2π|w|2

~2ε

∫
dEkδ(Ek − Ei) =

2π|w|2

~2ε

(5.29)

where we used ~ε
∑

k →
∫

dEk which is justified for small energy spacings ~ε.

Now we perform an exact treatment beyond perturbation theory for comparison.

The interaction picture Eq. (5.16) provides the equations of motion for the expan-

sion coefficients fk(t) = 〈k|ΨD(t)〉 and fi(t) = 〈i|ΨD(t)〉:

i~
d

dt
fk(t) = weikεtfi(t) i~

d

dt
fi(t) =

∑
k

w∗e−ikεtfk(t)

For the initial condition fk(0) = 0, we find

fk(t) =
w

i~

∫ t

0

dt′eikεt′fi(t
′)
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and thus

i~
d

dt
fi(t) =

|w|2

i~

∫ t

0

dt′
∑
k

e−ikε(t−t′)fi(t
′) =

|w|2

i~

∫ t

0

dτ
∑
k

e−ikετfi(t− τ) (5.30)

Now we have

N∑
k=−N

e−ikετ =e−iNετ

2N∑
k′=0

e−ik′ετ = e−iNετ e−i(2N+1)ετ − 1

e−iετ − 1
=

sin((2N + 1)ετ/2)

sin(ετ/2)

≈ 2

ετ
sin

(
(2N + 1)ετ

2

)
≡ g(τ)

where we assumed τ � 1/ε (condition I). Now this auxiliary function g(τ) satisfies∫∞
0

dτg(τ) = π/ε, where the main contribution is from the range 0 ≤ τ < 2π
(2N+1)

ε.

Indeed, one can show that

ε

π

∣∣∣∣∫ T

0

g(τ)− π

ε

∣∣∣∣ < 2

(2N + 1)εT
(not the best bound)

If now the function fi(t−τ) is approximately constant on the time scale τ . 2π
(2N+1)ε

(condition II), we may replace fi(t−τ) by fi(t) in Eq. (5.30). Then this differential

equation is easily solved and provides for the initial condition fi(0) = 1:

fi(t) = e−Γt/2 with Γ =
2π|w|2

~2ε
(5.31)

Thus the occupation probability of the initial state |fi(t)|2 decays with the rate Γ,

which is the sum of rates from Fermi’s golden rule.

Finally, we find

fk(t) =
w

i~

∫ t

0

dt′eikεt′e−Γt′/2 =
w

i~
1

ikε− Γ/2

(
eikεt−Γt/2 − 1

)
which provides the occupation probability

|fk(t)|2 =
ε

2π

Γ

(kε)2 + Γ2/4
=
ε~
2π

~Γ

(Ek − Ei)2 + ~2Γ2/4
for t� 1

Γ
. (5.32)

Thus the initial state is spread towards different final states with energies in the

range |Ek − Ei| . ~Γ. The distribution function in energy is a Lorentzian with a

full width at half maximum (FWHM) of ~Γ.

Eqs. (5.31,5.32) show, that the initial state decays on the time 1/Γ, which allows

us to quantify the two conditions for the approximations used above.
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Condition I For consistency, the time difference τ = t−t′ must cover the range of

several decay times 1/Γ. Thus we need ε� 1/Γ. Physically, this means that

the spacing between the final levels must be significantly smaller than ~Γ.

Furthermore, the total observation time must not surpass 1/ε. (Alternatively,

we can assume a dephasing of the final levels within this time scale due to

processes not included here)

Condition II As fi(t) is changing on the time-scale 1/Γ, we require 1/Γ �
2π

(2N+1)ε
or Nε~ � ~Γ. Thus the final states must cover a range of sev-

eral ~Γ around the energy of the initial state. This makes sense, as such a

range is also finally occupied, see Eq. (5.32).



Chapter 6

MANY-PARTICLE QUANTUM

MECHANICS

Real systems are always based on interacting particles. Up till now we studied

single particles in the presence of external potentials which are in fact an approx-

imation for the interaction with the rest of the world, see, e.g. Sec. 2.4.1. Now we

focus on systems of interacting particles, which constitute already a big problem in

classical physics. A particular problem arises in quantum mechanics if we consider

identical particles exhibiting the same physical properties (such as mass, charge,

etc) so that one cannot distinguish them in any type of measurement. Thus we

have to consider two cases seperately: (i) distinguishable particles like the proton

and the electron in a hydrogen atom, (ii) identical particles like several electrons

in an external confinement.

6.1 Distinguishable Particles

In analogy to the case of positronium (Sec. 3.4.2) we define the quantum state

|Ψ〉 of a system of N distinguishable particles (numbered by 1, 2, . . . N) as an

element of the product space H1 ⊗ H2 ⊗ . . . ⊗ HN which is spanned by the basis{
|ϕ(1)
n1 〉 ⊗ |ϕ

(2)
n2 〉 ⊗ . . . |ϕ

(N)
nN 〉

}
. Here {|ϕ(i)

n 〉} is a ON basis of the ket space Hi for

the particle of sort i. Thus, any N -particle state |Ψ〉 is uniquely defined by the

113
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complex expansion coefficients cn1,n2,...nN via

|Ψ〉 =
∑

n1,...nN

cn1,n2,...nN |ϕ(1)
n1
〉 ⊗ |ϕ(2)

n2
〉 ⊗ . . .⊗ |ϕ(N)

nN
〉 (6.1)

In the following, we restrict to two-particle states for convenience. The general-

ization to larger numbers N is straightforward.

The bases states |ϕ(1)
n 〉 ⊗ |ϕ(2)

m 〉 are supposed to form an ON basis of the product

space, so that their inner product is defined as

(〈ϕ(1)
n′ | ⊗ 〈ϕ

(2)
m′ |)(|ϕ

(1)
n 〉 ⊗ |ϕ(2)

m 〉) = 〈ϕ(1)
n′ |ϕ

(1)
n 〉〈ϕ

(2)
m′ |ϕ

(2)
m 〉 = δn′nδm′m (6.2)

Exploiting the linearity of the inner product, this defines the inner product of

arbitrary many-particle states from the same product space.

6.1.1 Product states versus entanglement

Note, that only few elements of the product space are product states, i.e. they can

be written as a single direct product

|Ψ〉Product state = |ψ(1)〉 ⊗ |φ(2)〉

with appropriate states |ψ(1)〉, |φ(2)〉 from the respective single particle spaces. Ex-

panding |ψ(1)〉 =
∑

n an|ϕ
(1)
n 〉 and |φ(2〉 =

∑
m bm|ϕ

(2)
m 〉 we find with Eq. (6.1) the

expansion coefficients of such a product state

CProduct state
n,m = anbm

This sets a lot of restrictions to the set of coefficients CProduct state
n,m . E.g.

CProduct state
1,2 CProduct state

2,1 = a1b2a2b1 = CProduct state
1,1 CProduct state

2,2

must be satisfied. Thus states like

|Ψ〉 =
1√
2
|ϕ(1)

1 〉 ⊗ |ϕ
(2)
2 〉+

1√
2
|ϕ(1)

2 〉 ⊗ |ϕ
(2)
1 〉

where all cnm are zero except for c12 = c21 = 1/
√

2, can in principle not be

written as |ψ(1)〉 ⊗ |φ(2)〉. Such states are frequently called entangled states and

their properties can be employed for quantum information processing tasks.

The most important message is: Almost all states cannot be written as product

states! (Actually, there is a common misconception that all states of the product

space can be written as product states.)
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6.1.2 Example: Hydrogen atom as a two particle system

The hydrogen atom consists of two particles, an electron (e) and a proton (p).

The two-particle state |Ψ〉 is accordingly a state of the product space between

the electron space and the proton space. Now we use for both states the spatial

eigenstates |re〉, |rp〉 as a basis and the spatial representation of the product space

becomes

Ψ(re, rp, t) = (〈re| ⊗ 〈rp|)|Ψ〉

This two-particle wave function Ψ(re, rp, t) has the following interpretation:

|Ψ(re, rp, t)|2∆3re∆
3rp is the probability to find the electron in the volume ∆3re

around re and the proton in the volume ∆3rp around rp.

Of course this requires the normalization∫
d3red

3rp|Ψ(re, rp, t)|2 = 1 .

Any operator acts on both particles. E.g., the operator for the total momentum

reads in spatial representation P̂SR
tot = ~

i
(∇re +∇rp), and the expectation value is

〈P̂tot〉 =

∫
d3red

3rpΨ(re, rp, t)
∗~

i
(∇re +∇rp)Ψ(re, rp, t) .

The Hamilton operator of the system reads

ĤSR
0 = − ~2

2me

(
∂

∂re

)2

− ~2

2mp

(
∂

∂rp

)2

− e2

4πε0|re − rp|
(6.3)

Now we look for the solutions of the stationary Schrödinger equation

ĤSR
0 Ψ(re, rp) = EΨ(re, rp)

If we introduce the relative coordinate r = re−rp and the center of mass coordinate

R = (mere +mprp)/M with M = me +mp, we find:

∂

∂re
Ψ̃(R, r) =

∂

∂R
Ψ̃(R, r)

me

M
+

∂

∂r
Ψ̃(R, r)(

∂

∂re

)2

Ψ̃(R, r) =

(
∂

∂R

)2

Ψ̃(R, r)
(me

M

)2

+ 2
∂

∂R
· ∂
∂r

Ψ̃(R, r)
me

M
+

(
∂

∂r

)2

Ψ̃(R, r)(
∂

∂rp

)2

Ψ̃(R, r) =

(
∂

∂R

)2

Ψ̃(R, r)
(mp

M

)2

− 2
∂

∂R
· ∂
∂r

Ψ̃(R, r)
mp

M
+

(
∂

∂r

)2

Ψ̃(R, r)
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Together this provides

ĤSR
0 Ψ̃(R, r) =

(
− ~2

2M

(
∂

∂R

)2

− ~2

2µ

(
∂

∂r

)2

− e2

4πε0|r|

)
Ψ̃(R, r)

with the reduced mass µ = (1/me + 1/mp)
−1. Ĥ0 is separating in the variables

R, r which allows for a product ansatz for the wave-function:

Ψ̃(R, r) =
1

(2π)3/2
eiK·Rφnlm(r) with Ĥ0Ψ̃(R, r) =

(
~2K2

2M
+ En

)
Ψ̃(R, r)

Here En and φnlm(r) are the eigenvalues and eigenfunctions of Eq. (5.13) where the

electron mass me is replaced by the reduced mass µ. The bound state as a whole,

i.e. the hydrogen atom, acts as a free particle with the total mass M . Obviously,

one cannot seperate Ψ̃(R, r) = f(re)g(rp) and this is an entangled state.

In the ground state the atom is in the state |n = 1, l = 0,m = 0,K = 0〉 regarding

the orbital degrees of freedom. Let us now consider the spin degrees of freedom.

This problem is analogous to the positronium discussed in Sec. 3.4.2, where the

index p now stands for the proton instead of the positron.

The interaction between the spins can be quantified by the operator

V̂ = f(re − rp)Ŝe · Ŝp

For the ground-state we have a four-fold degeneracy if there is no spin-spin inter-

action. The matrix of the perturbation potential becomes diagonal if we consider

the eigenstates for the total spin Ŝ = Ŝe + Ŝp and we obtain the energies

ES =− 3
f0

4~2
for the singlet

ET =
f0

4~2
for the triplet

with f0 =
∫

d3re
∫

d3rpf(re − rp)|Ψn=1,l=0,m=0,K=0(re, rp)|2. This splitting by

4f0~2/4 = 6µeV is called hyper fine structure and we find that the ground state

with total spin S = 0 is non-degenerate. Note, that the corresponding energy

difference is significantly smaller than the fine structure discussed in Sec. 3.4.3.
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6.2 Identical Particles

In classical physics, particles have individual trajectories. Thus even for particles

with identical properties (such as mass, charge, and further interaction strengths),

one can follow the particles individually and thus it is possible to provide a labeling.

Such a path does not exist in quantum mechanics and some care has to be taken

when treating identical particles.

6.2.1 Symmetry of two-particle states

Like in the preceding section we start with a basis {|an〉} of the single-particle

states and any two-particle state can be written as

|Ψ〉 =
∑
nm

Ψnm|an〉 ⊗ |am〉

Now we define the transposition operator T̂ by its action on the states of the tensor

product as

T̂ |an〉 ⊗ |am〉 = |am〉 ⊗ |an〉

Thus this transposition operator just exchanges the states of (1) and (2). Using

Eq. (6.2) it can easily be shown that T̂ is Hermitian. As T̂ 2 = 1 its eigenvalues

can only be 1 or −1 and the corresponding eigenstates are called symmetric or

anti-symmetric, respectively.

Any operator acts both on the first entry of the tensor product, labeled by (1),

as well as on the second entry (2). For example the kinetic energy is given by

[p̂(1)]2/2m + [p̂(2)]2/2m and the Coulomb interaction between the particles by

e2/(4π|r̂(1) − r̂(2)|). Both operators are identical upon exchanging the indices (1)

and (2) and the same holds for any physically meaningful operator Â of the two

particle space, as otherwise there would be a way to distinguish both particles.

Thus we find

T̂ Â|an〉 ⊗ |am〉 = ÂT̂ |an〉 ⊗ |am〉 .

As this holds for any basis state of the ket space, any physically relevant operator

satisfies

[Â, T̂ ] = 0 . (6.4)
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Consequently, a common set of eigenstates exists and the eigenstates of all two-

particle operators can be classified as symmetric or anti-symmetric. This holds in

particular for the Hamilton-operator determining the evolution in time. Thus, if

a state is (anti-)symmetric once, it will be so forever.

Now experience with all known physical systems can be summarized in the

Symmetry-Postulate:

• Systems of particles with integer spin (bosons) are eigenstates of T̂ with

eigenvalue 1.

• Systems of particles with half-integer spin (fermions) are eigenstates of of

T̂ with eigenvalue −1.

In this context the spin is the total spin for a compound particle. Thus the 4He

atom is a boson and the 3He atom is a fermion. Although their electron configu-

ration is identical, they exhibit quite different low-temperature properties. As the

symmetry properties determine, whether the mean occupation of a single particle

level in equilibrium follows the Bose-Einstein or the Fermi-Dirac distribution, the

symmetry postulate is frequently referred to as Spin-Statistic Theorem.1

The basis states |an, am〉 = |an〉 ⊗ |am〉 generally do not satisfy the symmetry

postulate. However they allow for the construction of appropriate states

• Symmetrized states for bosons:

|an, am〉S =
1

√
2
√

2
δnm

(
|an〉 ⊗ |am〉+ |am〉 ⊗ |an〉

)
• Anti-symmetrized states for fermions

|an, am〉A =
1√
2

(
|an〉 ⊗ |am〉 − |am〉 ⊗ |an〉

)
By construction we find |an, am〉A = 0, if n = m. This provides the Pauli-Principle,

stating that the same single-particle state (or level) must not be occupied twice

by fermions.

1This theorem can actually be derived from relativistic quantum mechanics and symmetry

considerations, W. Pauli Phys. Rev. 58, 718 (1940)
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6.2.2 Permutations and extension to N-particle states∗

A permutation ξ is a bijective map of the set of numbers {1, 2, . . . N} onto itself.

A common notation is ξ = (p1, p2, . . . pN), meaning that the number i is mapped

to pi for i = 1, 2, . . . N , where pi ∈ {1, 2, . . . N} and pi 6= pj for i 6= j. There are

N ! different permutations for a given N , which form a group with the multiplica-

tion ξ′ξ = (p′p1
, p′p2

, . . . p′pN ) for ξ′ = (p′1, p
′
2, . . . p

′
N) A transposition τij is a special

permutation, which maps the numbers i → j and j → i, while all other numbers

are mapped onto themselves. A well-known theorem states: Each permutation

can be written as a product of either an even or an odd number of transpositions.

Correspondingly, the permutation ξ is called even or odd, which is described by

the function πξ = ±1.

Example: Name all permutations for N = 3, and provide the respective πξ.

The N ! = 6 different permutations are

ξ1 =(1, 2, 3), πξ1 = 1 ξ2 =(2, 1, 3) = τ12, πξ2 = −1

ξ3 =(3, 2, 1) = τ13, πξ3 = −1 ξ4 =(1, 3, 2) = τ23, πξ4 = −1

ξ5 =(3, 1, 2) = τ12τ13, πξ5 = 1 ξ6 =(2, 3, 1) = τ13τ12, πξ6 = 1

Note that τ13τ12 6= τ12τ13, i.e. the permutation operators do not com-

mute. Furthermore, there are many ways to write ξ5 = τ12τ13 =

τ13τ23 = τ23τ12 as a product of transpositions, but all products require

an even number of transpositions.

For an arbitrary number N of particles, the basis of the ket space is given by the

elements

|an1〉 ⊗ |an2〉 ⊗ . . .⊗ |anN 〉 (6.5)

which are ordered by the particle number. For a given permutation ξ = (p1, p2, . . . pN)

of the numbers (1, 2, . . . N) the permutation operator P̂ξ exchanges in the N -

particle states the counting sequence of the particles

P̂ξ|an1〉 ⊗ |an2〉 ⊗ . . .⊗ |anN 〉 = |anj〉︸︷︷︸
where pj=1

⊗ . . .⊗ |an1〉︸︷︷︸
at position p1

⊗ . . . (6.6)
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For the transposition τij the corresponding operator is called T̂ij. Like in the

two-particle case, any physically relevant N -particle operator satisfies [Â, P̂ξ] = 0

and the eigenstates of Â and be classified according to their properties under

permutations.2 The symmetry postulate reads

• Systems of particles with integer spin (bosons) are eigenstates of all permu-

tation operators P̂ξ with eigenvalue 1.

• Systems of particles with half-integer spin (fermions) are eigenstates of all

permutation operators P̂ξ with eigenvalue πξ.

Again, the basis states (6.5) allow for the construction of appropriate states

• Symmetrized states for bosons:

|an1 , an2 , . . . anN 〉S =
1√

N !
∏

nNn!

∑
ξ

P̂ξ|an1〉 ⊗ |an2〉 ⊗ . . .⊗ |anN 〉

where Nn denotes, how often the index n appears in the set {n1, n2. . . . nN},
obviously N =

∑
nNn holds.

• Anti-symmetrized states for fermions

|an1 , an2 , . . . anN 〉A =
1√
N !

∑
ξ

πξP̂ξ|an1〉 ⊗ |an2〉 ⊗ . . .⊗ |anN 〉

which can be written as a Slater-determinant

|an1 , an2 , . . . anN 〉A =
1√
N !

∣∣∣∣∣∣∣∣∣∣
|an1〉(1) |an2〉(1) . . . |anN 〉(1)

|an1〉(2) |an2〉(2) . . . |anN 〉(2)

...
...

. . .
...

|an1〉(N) |an2〉(N) . . . |anN 〉(N)

∣∣∣∣∣∣∣∣∣∣
where the upper index (j) denotes the position in the tensor product.

2Note that for N ≥ 3 some transpositions do not commute with each other, thus not all

possible states can be chosen as eigenstates of all transpositions. A more thorough treatment

needs concepts from representation theory.
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6.3 Consequences of the Anti-Symmetrization

6.3.1 Single-particle operator

Consider the single-particle operator: ÔSP =
∑N

i=1 Ô
(i), which operates in the same

way on all particles. Typical examples are the kinetic energy p̂2
1/2m+ p̂2

2/2m, or

an external potential V (r̂1) + V (r̂2).

The expectation value of an anti-symmetric two-particle state reads:

A〈a, b|ÔSP|a, b〉A =
1

2
(〈a, b| − 〈b, a|)

(
Ô(1) + Ô(2)

)
(|a, b〉 − |b, a〉)

=
1

2

[
〈a, b|Ô(1)|a, b〉︸ ︷︷ ︸

=〈a|Ô|a〉〈b|b〉=〈a|Ô|a〉

−〈a, b|Ô(1)|b, a〉︸ ︷︷ ︸
=〈a|Ô|b〉〈b|a〉=0

− 〈b, a|Ô(1)|a, b〉︸ ︷︷ ︸
=〈b|Ô|a〉〈a|b〉=0

+ 〈b, a|Ô(1)|b, a〉︸ ︷︷ ︸
=〈b|Ô|b〉〈a|a〉=〈b|Ô|b〉

+same terms with Ô(2)
]

=〈a|Ô|a〉+ 〈b|Ô|b〉 = 〈a, b|ÔSP|a, b〉

The expectation value of a single-particle operator is not influenced by the anti-

symmetrization and can be evaluated by summing the properties of the individual

states.

6.3.2 Two-particle operator

The two-particle operator ÔTP = Ô(1,2) describes interactions between two parti-

cles. We find

A〈a, b|Ô(1,2)|a, b〉A =
1

2
(〈a, b| − 〈b, a|) Ô(1,2) (|a, b〉 − |b, a〉)

=
1

2

(
〈a, b|Ô(1,2)|a, b〉 − 〈a, b|Ô(1,2)|b, a〉 − 〈b, a|Ô(1,2)|a, b〉︸ ︷︷ ︸

=〈a,b|Ô(2,1)|b,a〉

+ 〈b, a|Ô(1,2)|b, a〉︸ ︷︷ ︸
=〈a,b|Ô(2,1)|a,b〉

)
= 〈a, b|Ô(1,2)|a, b〉︸ ︷︷ ︸

direct Term

−〈a, b|Ô(1,2)|b, a〉︸ ︷︷ ︸
exchange-Term

In this case the anti-symmetrization provides an additional term, called exchange

term, where the two-particle state |a, b〉 interacts with T̂ |a, b〉.
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Consider now the electron-electron interaction

Ô(1,2) =
e2

4πε0|r̂(1) − r̂(2)|

and the single-particle states in spinor representation (3.56) |a〉 → ϕa(r)χsa and

|b〉 → ϕb(r)χsb , where sa ∈ {↑, ↓} denotes the spin configuration in the column

χsa . E.g.

χ↑ =

(
1

0

)
Then we obtain:

A〈a, b|Ô(1, 2)|a, b〉A =

∫
d3r1

∫
d3r2 |ϕa(r1)|2 |χ(1)

sa |
2︸ ︷︷ ︸

=1

|ϕb(r2)|2 |χ(2)
sb
|2︸ ︷︷ ︸

=1

e2

4πε0|ri − rj|

−
∫
d3r1

∫
d3r2 ϕ

∗
a(r1)ϕb(r1)

([
χ(1)
sa

]†
χ(1)
sb

)
ϕ∗b(r2)ϕa(r2)

([
χ(2)
sb

]†
χ(2)
sa

) e2

4πε0|ri − rj|

The first term is the classical interaction of two charge distributions with densities

|ϕa(r1)|2 and |ϕb(r2)|2. The second term vanishes if the spin states sa, sb are

orthogonal. On the other hand, if the spins are aligned, i.e. sa = sb this term

(called exchange interaction) lowers the energy. Thus the alignment of spins is

favored, which e.g. is reflected in Hund’s rules.

6.4 General Treatment of Many-Body Systems

In many physical systems (atoms, molecules, solids) the behavior is dominated by

the electron-electron interaction. Such systems are generally not exactly solvable.

Typically a hierarchy of approaches is used to classify different features:

Hartree-approximation: Consider product states of suitable one-particle states

while satisfying the Pauli principle

Hartree-Fock-approximation: Consider anti-symmetrized product states, pro-

viding an energy correction (Section 6.3.2) called exchange energy Ex.

Correlation effects: The ’true’ many-particle state is a linear combination of

many anti-symmetrized product states. This provides further corrections in

the energy called correlation energy Ec, which are notoriously difficult to

estimate.
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A common approach is density functional theory, which in practice works on the

basis of a one-particle Hamiltonian with an effective potential containing terms due

to the exchange and correlation energy. This allows for the treatment of rather

large systems. While it can be shown that this method can provide correct prop-

erties of the ground state, the treatment of excited states is more questionable.

Alternatively, Green’s function techniques or the exact solution of the many-body

Hamiltonian (often called configuration interaction) for few particles can be ap-

plied.
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