LTH Lund
Avd. for Matematisk Fysik
FMFNO1/FYSN17

TENTAMENSSKRIVNING KVANTMEKANIK FK
October 26, 2013, 8.00-13.00

Aid: Sheet with formulae, TEFYMA (not needed)

The exam is in total 100 points + 5 bonus points, 7 exercises (please see also the back of this page!)

1. (15 points) The one-dimensional harmonic oscillator

(a) Show that the Hamiltonian

N 1 1
Hyo = —ﬁQ + Zmw?z?
2m 2

can be written in the form 1
Huo = hw (afa + 5)

and use this expression to calculate the energies of the states |0) and [1).
(b) Derive the first two normalized eigenfunctions of the one-dimensional harmonic oscillator by using
step operators, starting from |0}.

2. (15 points) Orthonormal complete basis

Let {|ux) : £=0,1,2,...} be an orthonormal basis that is complete in the Hilbert space.

(a) Express the state |¥) in terms of the basis states |ug).
(b) The observable A has eigenstates |ux) with corresponding eigenvalues A Assume that the state of

the system is
[U) = 3luo) + 4 |u1)

Now we perform a measurement of A on the system. What is the probability P(Ag), P(A1), P(A2) of
obtaining the result Mg, A1 or Ay, respectively?

3. (15 points) Commuting observables

(a) Show that if an operator A commutes with two components of an angular momentum operator J,
then it also commutes with the third component. What follows for [A, J2]?
(b) If the Hamiltonian H commutes with L,, what does that tell us about the geometry of the system?

4. (15 points) Angular momentum and spin one

(a) Consider a system with j = 1. Find the matrix representation of J,,Jy and J_ in the basis

_ 1 0 0

j=1,m;=1) < |0 1,0) < |1 1,—1) < |0
7

0 0 1

(b) An ion in a crystal has spin s = 1. For low energies, one only needs to consider the spin degrees of
freedom. The Hamiltonian is taken to be
H=AS82+B(52-52)
where the constants A and B are determined by the crystal lattice structure and the magnetic

properties of the surrounding ions. Find the eigenenergies.
PLEASE TURN PAGE!



5. (20 points) Magic numbers

Spin-half particles are moving in a three-dimensional harmonic oscillator potential

V-% 24 mwy +1mw52

(a) Assume that wy; = wy = w, = w. Determine the four lowest energy levels and their degeneracy.
What are the “magic numbers”?

(b) Let w; = wy = 2w,. Determine also for this case the four lowest energy levels, their degeneracies
and the magic numbers.

(¢) The energy levels of the protons or neutrons in some atomic nuclei can be approximated nicely by
a spherical harmonic oscillator potential (w; = wy = w, = w) with corrections of the type L-Sand
L2 ie. we add

A

Heorr = —xL-§ - uﬁz
to the Hamiltonian, where x and u are positive real constants.

(i) Determine to first order the splitting of each energy level due to I:Tcon Here it is best to
work in a basis of eigenstates that are common to [?,5%,J% and J,: The states |n,jl),
where n,, = 0,1,2,... is the radial quantum number, [ = 0,1,2,... and j = [l £ 2| with
energies Ey = fw(2n, +1+2) = Aw(N + ). Note that (quite conveniently) non-degenerate
perturbation theory is enough in this case!

(ii) How can the magic number 50 be obtained with this model?

6. (20 points) Level-crossings

There is a rule in quantum mechanics that says: “Perturbations remove level-crossings”. A level-crossing is
when the Hamiltonian depends on a parameter and the eigenvalues of it cross if plotted as a function of
this parameter. We shall investigate this in a very simple model Consider a two dimensional state space
where the unperturbed Hamiltonian Hy and the perturbation H are given by the matrices:

ky 0 0 ¢
HO("Y) - [ 0 _k_,.y:l » H'p = ||:6* 0:|
Here, k is a positive real constant, € is a constant, and v is a parameter (—1 <y < 1).

(a) Plot the eigenvalues of Hy as a function of .
(b) Calculate the eigenvalues of Hy + Hp and plot those in the same diagram.
(c) What is the result if we use perturbation theory (non-degenerate is sufficient)? Comments?

7. (5 bonus points) Contact-interacting fermions

Six fermions are in a one-dimensional harmonic oscillator potential. They interact with a contact interaction,
which is given by
Vint (21, 22) = 90(21 — 2)

where g is a real constant. All the fermions have spin up. Find the three lowest energy levels of the system.

Good luck!



LTH Lund
Avd. for Matematisk Fysik
FMFNO01/FYSN17

TENTAMENSSKRIVNING KVANTMEKANIK FK
October 19, 2010, 14.00-19.00

Aid: Sheet with formulae, pocket calculator (not needed), TEFYMA (not needed)

The ezam 1s in total 100 points + 5 bonus points.

Operators are denoted by boldface letters (e.g. H) and vectors with an arrow (e.g. ). You can choose
whatever notation you like best, just make it clear what notation you use and stick lo it.

1. ({ points) Consider two kets |¥) and |¥') such that |¥’) = e/ |U), where 6 is a real number.

(a) Prove that if [¥) is normalized, so is |¥').
(b) Demonstrate that the predicted probabilities for an arbitrary measurement are the same for |¥) and
[®'); therefore, |¥) and |¥’) represent the same physical state.

2. (10 points) Consider a harmonic oscillator of mass M and angular frequency w. Its state is given in

terms of its eigenstates

]W)chnm), ep €C
n=0

(a) What is the probability 7 that a measurement of the oscillator’s energy will yield a result greater
than 2Aw? When P = 0, what are the non-zero coeflicients ¢,?
(b) Now, assume that only ¢y and ¢; are different from zero. Write the normalization condition for |¥)

and the mean value (H) of the energy in terms of ¢y and c;.
(¢) If we also require (H) = hw, calculate |cp|? and |cq|%.

3. (20 points) There is a rule in quantum mechanics that says: “Perturbations remove level-crossings.” A
level-crossing is when the Hamiltonian depends on a parameter and the eigenvalues as a function of this
parameter cross. We shall investigate this in a very simple model. Consider a two-dimensional state space

where the unperturbed Hamiltonian H and the perturbation H, are given by
Ex 0 0 ¢
HO()‘)“[O -k/\:" Hp_lic* 0]
Here k is a positive real constant, ¢ is a complex constant and A a parameter (—1 < A < 1).

(a) Find the eigenvalues of Hy. Sketch them as a function of A.
(b) Calculate the eigenvalues of Hg + H, and sketch those in the same diagram.
(c) What is the result if we use perturbation theory? Comments?

4. (8 points)
(a) Prove that if an orthonormal discrete set of kets {|u;), ¢ = 1,2,...} constitutes a basis, then it

follows that
> lu) (wi = 1



(b) Show that if the closure relation is valid for an orthonormal continuous set {|wg)}, then this set
constitutes a basis.

5. (80 points) A two-dimensional harmonic oscillator of mass M and angular frequency w is perturbed
by
H, = \Muw’zy
(a) Find the first order correction to the ground state energy.
(b) Find the second order correction to the ground state energy.
(c) Solve the full problem exactly and compare the result with the approximation you obtained in parts
(a) and (b).
Hint: Use the variable substitution z’ = %(m +y), ¢y = %(m - ).

6. (8 points) In the system of a boson with spin s = 1, build the matrices of S;, S, and S, in a basis of
the eigenstates of S? and S,. Check that [S,, Sy] = iAS, holds.

7. (20 points) A system has the wave function

V() = N(z — x)e” "/, = \/m

where o is real and N is o normalization constant.

(a) Writing U(7) on the form W(7) = R(r)F(6, ), normalize the angular part F(d, ©).
Recall that:

/ 3 .
Y28, ) = % cos b, YEY, @) = q:\/% sin fetl®

(b) The observables L, and L? are measured. What are their possible outcomes and what are their
probabilities?

(c) (5 bonus points) What are the possible outcomes of a measurement of L;?
(Note that with a simple observation, the previous procedure can be applied.)



LTH Lund
Avd. for Matematisk Fysik
FMFNO1/FYSN17

TENTAMENSSKRIVNING KVANTMEKANIK FK

December 16, 2010, 08.00-13.00

Aid: Sheet with formulae, TEFYMA (not needed)

The exam is in total 100 points + 5 bonus points, 6 exercises

Operators are denoted by boldface letters (e.g. H) and vectors with an arrow (e.g. ). You can choose
whatever notation you like best, just make it clear what notation you use and stick to it.

1. (6 points) Let |1) and |12) be two orthogonal normalized states of a physical system:

(dilge) =0 and  {dhldn) = (altha) =

and let A be an observable of the system. Consider a nondegenerate eigenvalue of A denoted by a, to
which the normalized state |¢,) corresponds. We define

Pi(ay) = [(¢n]¥1)]?  and  Pa(an) = [(¢nl2)]?

(a) What is the interpretation of P;(ay) and Py(oy)?

(b) A given particle is in the state |®) = 3 [11) — 4i |1py). Normalize |®).

(¢) Now assume that (¢,|¥1), (¢n|t2) are real numbers and the system is in the state |®). What is the
probability of getting o, when A is measured? Write the answer in terms of P (am) and Py(am).

Solution.

(a) According to the postulates of quantum mechanics, Pi(cy,) is the probability of obtaining a, when
A is measured, while the system is in the state |11). The same is true for Py(ay,) in the state [1)g).

(b) The norm of |®) is

V(D) = /(3 (11| + 41 (¥a])(3 [tn) — 4i[¢h2))
= /9(h1 [91) + 16(wa1ha) + 12i(1ha|tb1) — 12i (31 [ha)
=V9+16+0+0=vV25=5

Hence, the normalized state is

|©7) = 5 (3|41) — 4i2))

(c) The probability of getting o, when measuring A is

6% = [(dnl [+ (3l01) — diw))] [
5 [3(dnlh1) — 4i{Bnlipa))?
55 [3(dnlt1) — 4i(Bnlt2))” (3(¢nlth1) — 4i(Bntb2)]
= [3(@nlt01)* + 4i{n[12)") (3(dn 1) — 4i(dn|th2)]
[91(bn 1) |? + 16]{@nlt02)]? + 121(¢n [1) (b lth2)™ — 121{¢n|th1) " (Bn]2)]
[9P1 (an) + 16 P2 (an))

Plan) = (¢

/\

cn|"‘ cul“‘ w"“ cnl"‘ t\3|"'



2. (6 points)
(a) Let A, B, C be operators. Prove the commutator relation
4, BC| - (A, BIC + BIA,C]

(b) Calculate the commutator [p2,x?].
(c) Let f(x) be a differentiable function. Compute [p,., f(x)].

Solution.
(8)  |A,B|C+ B|A,C) = (AB - BA)C + B(AC - CA) = ABC — BAC + BAC — BCA
= ABC — BCA = [A, BC]
(b) We use the commutator relation from (a) and remember that [p, ] = —ik, giving
[p*, 2% = a[p’, x} + [p*, 2]z = 2(plp, @] + [p, 2p) + (p[p, 2] + [, )2 = —2ih(zp + pa)
= —2ih(xp + (—ih+ xp)) = —2h> — dihap.
(c) Let g(x) be some well-behaved test function. Then

Ip. f(@)lg(a) = (bf(2) - [@IP)g(a) = pf()o(z) ~ F@)po(a) = A (f()g(2) + ihf(z) - gl)

_ df d9 _ 4,
——1ﬁ<d—()+f >+1hf( )d—~ lhdx
and therefore
[, f(@)] = ~ikf' (). -

3. (50 points) Consider a one-dimensional harmonic oscillator that is perturbed by

3/2
H, = ahw (272“)) xz®

where a is a real constant.

(a) Express H, in the operators a! and a.

(b) Determine the matrix elements (m|H p|n), where |n) = |¢,) is the nth eigenstate of the unperturbed
1D harmonic oscillator.

(c) Consider the second excited state. Calculate the 1st and 2nd order correction to the energy, and the
1st order correction to the wave function.

Solution.

(a) From the formula sheet we know that

| 2R
- al
x 2 mw( +a)

which gives (using aa! — ata = 1 repeatedly)

2muw \ /2 3 2mw\*? 1 [ 2n \*?
H, —ahw| 222 = aqhw | 2 il e al +a)?®
P < h ) ( h ) 8 <mw> ( )

= afw ((a")® + (a')’a + alaa’ + a(a’)? + a'a’? + aala + a’al + a?)

= ahw ((af)?’ +(a)?a+al(ala+ 1)+ (a'a+ Da' + ata® + (a'a+1)a+ ala’a+1)+ a3)
ofuw ((aﬂL)3 +3(aa+a +af(ata+1)+at +2a'a’+a + (ala + l)a+a+a®)

= afw ((a')® + 3(a!)?a + 3a' + 3ata® + 3a + @)

= ofw ((a')® +3al(ata + 1) + 3(ala + 1)a + a®)



(b) Using the result of (a)
(m|H ,n) = ahw(m| ((a")? + 3af(a’a + 1) + 3(a’a + 1)a + a®) |n)
= alw (m| ((ah)®|n) + 3a’(ata + 1) |n) + 3(a’a + 1)a|n) + a® |n))
w (m| (\/(n+1)(n+2)(n+3 [n+3)+3vn+1I(n+1)|n+1)
+3((n— 1)+ 1)ymln — 1) + V/n(n— 1)(n—2) |n - 3) )
= ahw (\/{?+ D+ 2)(1 + 3)0mmts + 3(n+ 1) 2601

+30% 26 1 + /n(n — 1)(n — 2)5m,n_3>

(¢) For the 2nd excited state we have n = 2. From (b) we know that AE(I) (2|Hp|2) = 0, that is the
1st order correction to the energy is zero. For the 2nd order correction we find

AED = 3 [(m|H|2)]

m#2 E20) E(O)
loahwy/3 - 4 - 5)? ok - 33/2|2 lahw3d - 23/2)2
- [m(w%)-m(m%) +ﬁw(2+%)-hw(3+%) +hw(2+—;—)—m(1+%) +O}
= —191a?Hw

The 1st order correction to the wave function is

AuplD = 5 (mIHp|2>) o

m#2 EQO) - E7("V(l)
[ amy3 T - ahiw3(3)3/2 - ahw3(2)3/2 B
ho 2+ ) w5+ (@41 - (B+3) (L) - (I+)

=« <6\/§¢1 — 9v3¢5 — \/2?‘0055)

4, (30 points) A two-dimensional harmonic oscillator of mass M and angular frequency w is perturbed
by
H, = \Mu’zy
(a) Find the first order correction to the ground state energy.
(b) Find the second order correction to the ground state energy.
(¢) Solve the full problem exactly and compare the result with the approximation you obtained in parts
(a) and (b).
Hint: Use the variable substitution =’ = %(m +y), v %(x —y).

Solution. For energy levels, wave functions, etc. of the unperturbed 2-dimensional harmonic oscillator,
refer to p. 19 in the compendium.
(a) For the ground state we have n = 0 and hence n, = n, = 0. Note that the eigenfunctions of the

two-dimensional harmonic oscillator are ¢n n,(T,y) = @n, ()P, (y) where ¢n, (z) [¢n, (y)] is the
nzth [nyth] eigenfunction of the one-dimensional harmonic oscillator. Now

+oo  ptoo
AE = 001100y = [ [ (0la)do(w)"zubo(a)eo(u)dzdy

+-00 +o0
= [ ao@P @z [ yiootw)lt dy=0
N—— N——

—00 —00
odd function odd function



Another way is to employ step operators (here I use the notation |nyn,) = [ne), Iny), and note that
the z-operators only work on the z-ket, y-operators only work on the y-ket)

AESY = (00| H,|00) o (00}(al + az)(a} + a,)[00) = (0], (0], (alal + alay + azal + azay) 0), j0),,
(ol, (o, (1), | 1), +0+0+0) =0
For the 2nd order correction to the ground state (n, = n, = 0) we need
(neny|Hpl00) = §Miw(ngny| (alal + alay, + azal + azay) |00) =

= %)\M&n:, N 571.y,1

M (ngny| (J11) +0 + 04 0)

which gives

2 I\hw|?
AEP = ) |(n(g)ny|H((|)())0)l = W 1|2r I1 S
rare©0) B8 = Badin, O0+1) - hw((1+1)+1)
The full Hamiltonian is
2 2 2 2
_ b 1 27,2 h 0 0 1 2/.2 .2 ,
H_%——kgmw (2® + y?) + Amw? Ty =5 <w+8_y2 + smw? (2% 4+ y® + 2Azy)

We would like to be able to put it on a harmonic oscillator form, i.e. only with 2nd order terms in
some coordinates (z',y’). Note that if

rxz' +y and yoz —y then —y'? and z? 4+ 3? x 2/ + y?
Now one would substitute (z,y) by (z'+%',2’ —y’), find out what constant to put in front of ' + 3’
and z' — g’ and put that in afterwards. But I've already gone through the calculations so I'll use the

most convenient constant directly, i.e.

zy oc z'?

1
= —sld +Y) ¥= sl )
which ensures that BEQ + 53—:2 = %f—; + ai;g Now,
1
x’:%(m%—y), Y —2(:n—y)
and we find
o _oa ooy _1(0 o
or 8z’ 0z ' Oy Bz /2 \ 8z’ ' Y
D_oa doy_1(0 o
dy Oz’ By Oy oy /2 \or Oy
212, i L8 P00
dr? 2 \8 8 2\ 0z oy'? dx' By = iz (9_2 52 H?
o 1 _l(o & 0 9 dz? ~ Oy?  ox?  oy?
Oy? 63;/ y T2\ 9 3y’2 ox’ By
Finally we substitute the variables
7‘12 82 62 )
= (613+8y)+ smw? (2 + y* + 2)zy)
h2 62 62
=5 (s + 1 ) + A &+ 0 (67 )
2
= o 3m (VI X% + (V= 027
:p_lz__}_lm(wzmerwz,zQ)
T om 2 . vY



This is the Hamiltonian for an anisotropic (wys # wys) harmonic oscillator in two dimensions. Its

eigenenergies are
Enpn, = hwe (N + 3) + Awgr (ny: + 3) = hw (\/H—A(nm/ + 3+ VI = Ay + %))
Assuming that A is small, the exact energy can be Taylor expanded to 2nd order
Bapn, ~hw (1432 = 3)32) (ne + 3) + (1 - 52— §2%) (ny +3))

= hw(ng + ny + 1) + 2w (ng — ny) — é)\Qﬁw(nwl +ny +1)
= hw(n+1) + A w(ng —ny) + (-3 A%hw(n + 1)
N—— N -

~ ~

o T
=ED —aED =AE®

Note how the 1st and 2nd order corrections we found in (a) and (b) appear in the Taylor expansion,

5. (8 points)

(a) Construct the matrix for the operator S in the space M!/2,
(b) Show by using matrix multiplication that § o = 0.
(c) Determine by matrix multiplication the constant ¢ in the relation

Si8=ca

and compare the result with the expression for general angular momentum.

Solution. In the space M'/? we have s = 1 and therefore m; € {3, -3}, so the space is 2-dimensional

with basis {|1),]-4)}, whose matrix representation is { [3], [{]}-

(a) We have

() S Im) = (5 — ma)(§ + e + 1)y + 1) = A/ (3 = mg)( +m + 1omm 41

giving
0 A

(b) The state o corresponds to spin up, that is |4), with matrix representation [5)- Hence

so-[s 100

(c) The state § corresponds to spin down, that is |—3), with matrix representation [7]. Thus

sa-[3 J[0- -

so the constant is ¢ = A. The general expression is

c=h/ls—m)s+mat )=/~ (-HE+(H+1)="h



6. (20 points) At a certain moment the wave function for a particle is given by

where

¢(r) = f(r)U(6,¢)

U(8,¢) = N(sinfcosy + cosf + 1)

and N is a normalization constant.

(a)

(b)
(c)

(d)

Write U(6, @) in terms of the spherical harmonics ¥;™(6, ). The first few of them are:

1 5
Y28, p) = yom Y2(8, ) 1/167T(3cos 6—1)
+1 15 +i
(8, ¢) ——cos€ Y5 (0,9) =F sm@cos@e 1

19, 0) = F —sm@ei“" Y20, 0 sm 2 gt
oy P

Determine N such that U(#, ) is normalized.

The observables L, and L? are measured. What are their possible outcomes and what are their
probabilities?

(5 bonus points) What are the possible outcomes of a measurement of L,?

(Note that by a little use of cartesian coordinates and with a simple observation, the previous
procedure can be applied.)

Solution.

(a)

(b)

U(@,p) = N (sinf3 (' +e7*) +cosf +1) = N <% 8—;- (Y7l -vhH + ,/%”YIO + \/LEYOO)

The spherical harmonics Y™ are orthonormal, so we find right away

2r 4w 207 3 1
i) < 3 Tt ) 3 5 Van
giving
il 1 3
Ul,p) = — (Y71 -YH + Y
( (,0) m( 1 1) \/- 0

From the result in (b) we see that the possible values of [ are { = 0,1 and the possible values of m

are m = —1,0,1. Hence L2 can be measured to /(I + 1)A* = 0,2A with probabilities P(l = 0) = 2

and P(I ) =25 1 + 1= % and L, can be measured to mh = —h,0,h with probabilities
P(m——l)--i0 P( m=0)=:+2=4%and Plm=1)= 1.
Note that

o(r) = f(r)U(8, ¢) = Nj(r) (rsinfcosp +rcosf + 1) = Nf()l(:c+z+r)

The wave function ¢ is therefore symmetric in z and 2. Therefore the possible values when measuring
L, and their probabilities are the same as for L,. That is, we can measure L, to —A, 0, A with the

respective probabilities 5 g 11



